A MANUAL

OF

ORGANIC MATERIA MEDICA

AND

PHARMACOGNOSY

AN INTRODUCTION TO THE STUDY OF THE VEGETABLE KINGDOM AND THE VEGETABLE AND ANIMAL DRUGS (WITH SYLLABUS OF INORGANIC REMEDIAL AGENTS)

COMPRISING

THE BOTANICAL AND PHYSICAL CHARACTERISTICS, SOURCE, CONSTITUENTS, PHARMACOPOEIAL PREPARATIONS, INSECTS INJURIOUS TO DRUGS, AND PHARMACAL BOTANY

BY

LUCIUS E. SAYRE, B.S., Ph.M.

DEAN OF THE SCHOOL OF PHARMACY; PROFESSOR OF MATERIA MEDICA IN THE UNIVERSITY OF KANSAS; MEMBER OF THE COMMITTEE OF REVISION OF THE UNITED STATES PHARMACOPEIA; DIRECTOR OF DRUG LABORATORY FOR STATE OF KANSAS

FOURTH EDITION, REVISED

WITH 302 ILLUSTRATIONS

THE MAJORITY OF WHICH ARE FROM ORIGINAL DRAWINGS AND PHOTOMICROGRAPHS

PHILADELPHIA

P. BLAKISTON'S SON & CO.
1012 WALNUT STREET

Sayre's Materia Medica - Page 1
PREFACE TO THE FOURTH EDITION

The Ninth Revision of the United States Pharmacopoeia, as in no previous edition, makes it important, and even necessary, that all works of a pharmaceutical character be revised.

The last revision of the Pharmacopoeia has required, on the part of the revisers, very exceptional work directed toward the subject of standards; and inasmuch as the United States Pharmacopoeia, as well as the National Formulary, is mentioned in the statute, known as the Food and Drugs Law, this revision has become of greatest importance.

Recognizing this, great pains have been taken in the revision of the present edition, that the standards, whenever mentioned, shall conform to the legal standard above referred to.

Many changes have been made necessary by the fact that the U.S.P. IX has deleted fifty-three vegetable drugs and has added, or raised to official recognition, but four of well known drugs.

Among the conspicuous changes in U.S.P. IX, is the adoption of “Mil” (singular), “Mils” (plural), for cubic centimeter (cc.). This coined word, Mil—for Milliliter, is more accurate than cubic centimeter, (cc.) for the thousandth of a liter, which the cubic centimeter was intended to express. Throughout this present edition “mil” and “mils” have been used, replacing the less accurate “cc.”

The Families of plants yielding organic drugs have been rearranged in the present volume. The order of arrangement adopted is that which is followed by all botanists of any note at the present time, commencing with the Algæ, Fungi, and other cryptogamous growths, the order and sequence of such authors as Engler and Prantl have been practically followed. This has required an entire transposition of the natural orders of the former edition.

The Chapter on Inorganic Chemicals has been enlarged to meet the demand of many students. Added to this is a brief Chapter on Therapeutic Action, which is intended as a suggestion to students of how to expand their knowledge in this direction by reference to other works.

Sayre's Materia Medica - Page 2
The chapters relating to histological study of plant tissues have been entirely omitted in the present edition in order to economize space for new material, and, secondly, because Professor Stevens, formerly associated in this work, has published an entirely satisfactory volume for class-room work and covered the ground more completely in his “Plant Anatomy.”

A Chapter on Serotherapy has been incorporated which, in treatment, while it is concise, it is hoped will meet the present demand of students of Materia Medica, who first must have studied the elements of this very extensive subject.

The author desires to make special mention of valuable service rendered by his associate, Mr. Chas. M. Sterling, who has revised that portion of the work included in the various chapters of Part IV. The author regrets that he has been obliged to reduce rather than lengthen many articles in Materia Medica in order that the present volume should not be unduly expanded.

L. E. S.
PREFACE TO THE FIRST EDITION

The present volume is, in a slight degree, a revision of a work written by the author in 1879, entitled “Organic Materia Medica and Pharmacal Botany.” This work has been out of print a number of years, and until recently the author has had no time to rewrite it in such a manner as seemed necessary to bring it up to the present standard; it has also been deemed advisable to change completely the model of the former work. The task now accomplished presents not so much a revision, as a new treatise.

Two methods of classification of drugs are here brought into use—a classification according to physical characteristics, and a classification according to botanical relationships—both of which are, though, occupying separate divisions of the book, so brought together by a system of numbering that the place of the drug in each of the classes is at once apparent. The author would here suggest that those who make use of the work in connection with a cabinet of specimens, should have the containers in the cabinet numbered to accord with numbers in the book, in order that students may readily find specimens for identification and study.

It is perhaps needless to state that the nomenclature and general character of the text is made to conform with the present standard—The United States Pharmacopoeia; but the capitalization of specific names derived from proper nouns has been discarded, in accordance with present botanical practice. The descriptive heading of each of the official drugs has been in most cases given in the pharmacopoeial language. The unofficial drugs are distinguished in the text by the use of a different type and by a different setting of the article from that which treats of the official drugs. In this connection the author desires to give credit to Mr. George S. Davis, who has aided in the work by placing at the author's disposal most excellent material regarding rare unofficial drugs, and the use of material from his publication, credited under Bibliography.

The scope of the work, it will be seen, embraces not only the official drugs of the vegetable and animal kingdoms, but a vast variety of unofficial drugs, some of which are of rare occurrence in the market. These have been included because of the greater field this inclusion gives for pharmacal and botanical study; the greater variety of forms...
presented to the student of pharmacognosy, the wider will be his range of observation. It is hoped that in the 624 drugs mentioned, the student or instructor will be able to make a selection which will be ample to supply material to illustrate the principles of the subject under consideration. In a work of this size an exhaustive treatment of this number of drugs could not be given, but by a brief mention of them material for study is indicated. It may be mentioned in this connection that wherever metric measurements are given, these are stated in millimeters; this has been deemed advisable for the purpose of comparison.

The illustrations included in Part I are taken mainly from Bentley's “Manual of Botany,” to the author of which our thanks are due. An exception, however, is found in the drawings of the starches, which were prepared from original specimens. The remaining illustrations, with the exception of those in the Chapter on Animal Drugs, have been prepared under the direction of C. E. McClung, Ph. G., a graduate of the Kansas State University School of Pharmacy, class of '92. All the drawings of the cross-sections are drawn directly from sections prepared by him, the cell contents being first removed by the method described in Appendix C. It has been our aim to present the elements of each drug in their true proportions. As often as possible, the cells in their exact shape and relative size have been drawn, and in no case has meaningless shading been employed. For some of the drawings of the medicinal plants credit is given below in the Bibliography. The illustrator has kindly furnished a Chapter on Pharmacal Microscopy, which will be found in Appendix C.

The author is much indebted to Professor Vernon Kellogg for information concerning animal drugs used in pharmacy; also for Appendix B, in which he treats of insects attacking drugs. The drawings to illustrate the material furnished by Professor Kellogg are hereby credited to Miss Mary Wellman, artist.

For aid in the preparation of, the text in Part I our thanks are due to Mr. A. O. Garrett, who, in his university course, has made botany a special study.

Appendix B, upon the synthetic remedies, is the work of Mr. F. B. Dains, who has made a specialty of organic chemistry and was instructor in this subject in the University of Kansas during the year 1894. In this section the new spelling of chemicals has been adopted only in a few
To Dr. S. W. Williston, Professor of Physiology and Anatomy, who has aided in the condensed description of therapeutic action; to Mr. O. H. Parker and Mr. William Clark, members of the Senior Class of ’94, who assisted in the study of characteristics from crude specimens of drugs in the open market; to Mr. W. O. Strother, of the same class, who supplied a few drawings of cross-sections; and to Mr. W. F. Newton, of the junior Class, who materially aided not only in the study of drug characteristics, but also in arranging the material, our thanks are due.

L. E. S.
PART I
A STUDY OF DRUGS

CLASSIFICATION

Drugs may be arranged in several different ways, to suit the aim and convenience of the student. The prominent systems of classification in common use are as follows:

I. Therapeutical.—This system of classification is especially valuable to the student of medicine. Here the physiological action and therapeutical application are made most prominent.

II. Chemical.—Classification of organic drugs is not infrequently based upon the character of the constituents. In this way alkaloidal drugs, glucosidal drugs, drugs containing volatile oil, etc., form the subgroups. Other subgroups of chemical classification are:

Inorganic Chemicals.—To the pharmacist the chemical action, the crystalline form, the solubility, and other physical properties are of especial value. For mineral substances, therefore, he adopts the classification of the chemist. Some therapeutists, seeing a certain relation between therapeutical action and chemical constitution, adopt the same method of grouping also for these mineral substances.

Synthetical Remedies.—This class of remedial agents is most difficult to classify in a manner consistent with science, partly because our materia medica is becoming overloaded with proprietary combinations and mixtures of synthetic medicinal products with various adjuvants to modify their action. These latter have oftentimes certain unscientific names, which give little or no idea of their composition.

III. Physical.—According to this method, drugs having allied physical properties are brought together. Roots, leaves, flowers, fruits, and seeds form the principal divisions. Under this head two different arrangements are present in this volume: (a) Classification into subgroups based upon such prominent features as odor, taste, etc. By this means the aromatic, bitter, acrid, sweet, and mucilaginous drugs are brought together. (b) Classification into subgroups based upon structural characteristics. Here drugs having similar structure are found associated. In the table having this arrangement the official drugs only are found. Appended to each there is a physical description in the fewest possible terms—such prominent terms as are used in describing the physical and structural characteristics.
Each drug has a number, so that a ready reference to the same drug in the body of the work is made easy. Here a fuller description is found.

Instructors in pharmacognosy who use this book are recommended to employ this conspectus and to have the students use these numbers. When labeling the drug (or its container) for class work, these numbers should be employed. The experience of the author in teaching the subject under consideration has been most favorable to this method. By the use of the numbers at first, the student quickly grows to learn, not only the drug, but the place in the system to which it belongs. The subject grows in interest until he is able to recognize the drug and to properly classify it.

IV. Botanical.—By this arrangement drugs belonging to the same natural order are brought together. In subdividing these orders botanical relationship is emphasized to as large an extent as is practicable in dealing with drugs from a pharmaceutical standpoint. From the point of view of the scientist this is the ideal system. This method has been adopted in the body of this work.

Geographical.—Drugs are rarely classified according to the locality of their occurrence. It is, however, instructive to the student to refer individual, or classes of drugs, to their locality. Drugs of ancient times were obtained chiefly from Asia. Many of these have survived, and are official to-day; notably aloes, myrrh, etc. With the discovery of the new world many important drugs were made accessible. Geographical classification is therefore of interest from many points of view. The presentation of this subject is facilitated by outline maps with the drugs indicated in their natural localities. As an example of such a map, see Cinchona.

Alphabetical Arrangement.—In all the standard books of reference, such as the “Pharmacopoeia” and the “Dispensatories,” a strictly alphabetical arrangement is followed, no attention being paid to systems of classification. The arrangement is made wholly subservient to quick and ready reference.

In the following order four classifications will be presented: 1. A synopsis of therapeutical agents. 2. Chemical agents. 3. Classification of organic drugs, as indicated under (a) and (b). 4. Botanical arrangement, where drugs will be treated at some length.
TABLE OF THERAPEUTICAL AGENTS

I. INTERNAL REMEDIES

A. Affecting Nutrition:
   Haematics (Blood Tonics).
   Alkalies. Acids.
   Digestants.
   Antipyretics.
   Alteratives.

B. Affecting the Nervous and Muscular Systems:
   (a) The Brain—
      Cerebral Excitants.
      Cerebral Depressants.
      Narcotics.
      Hypnotics.
      Analgesics.
      Anaesthetics.
   (b) The Spinal Cord—
      Motor Excitants.
      Motor Depressants.
   (c) Nerve Centers and Ganglionic System—
      Antispasmodics.
      Tonics.
      Antiperiodics.
   (d) Heart and Circulatory System—
      Cardiac Stimulants.
      Cardiac Sedatives.
      Vascular Stimulants.
      Vascular Sedatives
      Vasoconstrictors.
      Vasodilators.
   (e) Excretories—
      Diuretics.
      Renal Depressants.
      Vesical Tonics and Sedatives.
      Urinary Sedatives.
      Diaphoretics and Sudorifics.
      Anhidrotics.
      Antilithics.

C. Affecting Special Organs—Partly through the Nervous System:
   (a) Organs of Respiration—
      Expectorants.
      Pulmonary Sedatives.
      Errhines.
      Sternutatories.
(b) Alimentary Canal—
Sialagogues.
Emetics.
Purgatives.
Astringents.
Stomachics.
(c) The Liver—
Hepatic Stimulants.
Cholagogues.
Hepatic Depressants.
(d) Generative System—
Ecbolics or Oxytocics.
Emmenagogues.
Aphrodisiacs.
Anaphrodisiacs.
(e) Eyes (Ciliary Muscle)—
Mydriatics.
Myotics.

II. EXTERNAL REMEDIES

A. Irritants:
Rubefacients.
Epispastics.
Pustulants.
Escharotics.

B. Local Sedatives:
Demulcents.
Emollients.

III. AGENTS WHICH ACT UPON ORGANISMS WHICH INFEST THE HUMAN BODY
Antiseptics.
Disinfectants.
Antizymotics.
Anthelmintics.
Antiparasitics.
Antiperiodics.

THERAPEUTICAL AGENTS DEFINED
HÆMATICS restore the quality of the blood to normal condition. They exert a direct influence on the composition of the blood: e.g., preparations of iron, of manganese, cod-liver oil, etc.
ALKALIES act, in the concentrated form, as caustics (escharotics), but when diluted, as antacids. Dilute alkalies, if given before meals, however, will stimulate the production of the acid gastric juice. The carbonates of potassa and soda and the bicarbonates, also preparations of the alkaline earths, such as lime-water and mixtures of magnesium carbonate, are good examples. Some of the salts of the alkalies have a remote antacid effect, becoming decomposed in the blood and excreted in the urine, which they render less acid.

ACIDS.—These have an action opposite to that of the alkalies. When much diluted, they are administered for the purpose of checking hyperacidity of the stomach, by stimulating the production of the alkaline pancreatic juice and checking the acid gastric juice. Examples: Dilute hydrochloric acid, phosphoric acid.

DIGESTANTS.—Agents which effect solution (digestion) of food in the alimentary canal. Examples: Pepsin, pancreatin, trypsin, papain, etc.

ANTIPYRETICS.—Agents which reduce the temperature of the body, either by reducing the circulation or diminishing tissue change, or metabolism, or favoring the loss of heat through radiation, conduction, etc. Examples: Quinine, aconite, antipyrine, antimony, etc.

ALTERATIVES.—A term used to designate a class of agents which alter the course of morbid conditions, modifying the nutritive processes while promoting waste, by stimulating secretion, absorption, and the elimination of morbid deposits; especially used in the chronic diseases of the skin. Employed in the treatment of phthisis, syphilis, gout, neuralgia, asthma, etc. Examples: Arsenious acid, mercury, iodine and the iodides, sarsaparilla, guaiac, colchicum, stillingia, etc.

CEREBRAL EXCITANTS.—Agents which increase the functional activity of the cerebrum, without causing any subsequent depression of brain function. Examples: Camphor, valerian, caffeine, cannabis (in small doses), etc.

CEREBRAL DEPRESSANTS have an opposite effect to the preceding, lessening brain activity. Some of the drugs of this class are employed as hypnotics or as analgesics.

NARCOTICS.—Agents which lessen the sensibility to pain and cause
sleep. A narcotic will abolish pain, while an anodyne will frequently merely overcome wakefulness. Examples: Opium, cannabis indica, belladonna, humulus, etc.

HYPNOTICS.—Agents which induce sleep and will often abolish pain and cause neither deliriant nor narcotic effects. Examples: Chloral, sulphonal, trional, the bromides, etc.

ANALGESICS.—Agents which relieve pain by their effect upon the sensory centers; the term is synonymous with anodynes. The general anodynes, which taken internally, affect the whole organism; local anodynes affect the part to which they are applied. Examples: Opium, belladonna, hyoscyamus, aconite, antipyrine, acetanilid, aspirin, chloral hydrate, etc.

ANÆSTHETICS.—Agents which suspend consciousness and temporarily destroy sensation. The local anaesthetics affect only the part to which they are applied. Examples: Ether, chloroform, nitrous oxide, etc. Local anaesthetics: Cocaine, carbolic acid, ether spray, etc.

MOTOR EXCITANTS.—Agents which increase the functional activity of the spinal cord and the motor apparatus, invigorating the action of the heart and lungs. Examples: Nux vomica, strychnine, etc.

MOTOR DEPRESSANTS have an opposite effect to the motor excitants, lowering the functional activity of the spinal cord and motor apparatus. Examples: Alcohol, opium, aconite, conium, belladonna, etc.

ANTISPASMODICS.—Agents acting on the nervous system in various ways. They prevent or allay irregular action or spasm of voluntary and involuntary muscles. This is accomplished frequently by a sedative influence upon the nerve centers, while a few others exert their influence by stimulating the nerve centers employed to relieve spasms. Examples: Alcohol, ether, valerian, camphor, asafoetida, musk, the bromides, hydrocyanic acid, etc.

TONICS.—Agents which increase the vigor and tone of the system by improving the appetite, favoring digestion and assimilation, and adding strength to the circulatory system. Examples: Gentian, columbo, quinine, etc.

ANTIPERIODICS.—Agents which prevent or check the return of
diseases which recur periodically, possibly by a toxic action upon the microbes in the blood, which are supposed to cause the disease; but little is known of their mode of action. The typical antiperiodic, quinine, has, however, a decided effect upon the heart and brain, as well as other parts of the nervous system.

CARDIAC STIMULANTS, as the name implies, are agents which increase the heart's action, the force and frequency of the pulse. Examples: Ether, alcohol, atropine, sparteine, nitroglycerine, etc.

CARDIAC SEDATIVES allay and control palpitation and overaction of the heart. Examples: Aconite, veratrum viride, digitalis, antimony, etc.

VASCULAR STIMULANTS.—Agents which dilate the peripheral vessels and increase the peripheral circulation. Members of this class also strengthen the heart's action, and are advantageously employed in debilitated conditions of the central organs of the circulation. Examples: Alcohol, preparations of ammonia, caffeine, digitalis, strophanthus, epinefrin, etc.

VASCULAR SEDATIVES.—Agents which lessen the capillary circulation and raise the blood pressure by stimulating the vasomotor center or its mechanism and the walls of the vessels. Examples: Ergot, digitalis, opium, salts of iron, etc.

DIURETICS.—Agents which increase the secretion of urine, acting either directly upon the secreting cells of the kidneys or by raising the general or local arterial tension. Employed in acute congestion and inflammation of the kidneys and in dropsies. Examples: Squill, scoparius, triticum, and organic salts of the alkalies.

RENAL DEPRESSANTS.—Agents which lower the activity of the renal cells, thereby lessening the urinary secretion. Examples: Morphine, quinine, ergot, etc.

VESICAL TONICS AND SEDATIVES.—Agents acting upon the bladder, in the one case increasing the tone of the muscular fibers and in the other lessening the irritability of that organ. Examples: Tonics-strychnine, cantharis, belladonna, etc.; sedatives-opium, buchu, uva ursi, pareira, etc.

RENAL SEDATIVES.—Agents which exert a sedative action upon the
whole urinary tract. Examples: Copaiba, cubebs, etc.

DIAPHORETICS AND SUDORIFICS.—Agents which increase the action of the skin and promote perspiration. Examples: Dover's powder, jaborandi, camphor, sweet spirits of niter, etc.

ANHIDROTICS.—Agents which check perspiration. Examples: Acid camphoric, atropine, zinc salts, acids, alum, etc.

ANTILITHICS.—Agents used to prevent the formation of insoluble concretions or to dissolve concretions when formed in the ducts. Examples: Salts of lithia, potassium, benzoic acid, etc.

EXPECTORANTS.—Agents which are employed to facilitate the expulsion of bronchial secretions and to modify the character of these when abnormal. Examples: Ammonium chloride, the aromatic balsams, squill, licorice, senega, etc.

PULMONARY SEDATIVES.—Agents which allay the irritability of the respiratory center and the nerves of the lungs and bronchial tubes. Examples: Belladonna, opium, hyoscyamus, hydrocyanic acid, etc.

ERRHINES AND STERNUTATORIES.—The latter are agents which affect locally the nasal mucous membrane, producing sneezing; the former produce an increase of nasal secretion and discharge. They also indirectly stimulate the vasomotor centers and at the same time excite the respiratory centers. Examples: Ipecacuanha, sanguinaria, veratrine, etc.

SIALAGOGUES.—Agents which promote the secretion and flow of saliva from the salivary glands. Examples: Pyrethrum, mezereum, the mercurials and antimonials, etc.

EMETICS.—Agents which cause vomiting, acting directly upon the nerves of the stomach or acting through the blood upon the vomiting center, or by reflex irritation of the vomiting center. Examples: Mustard, zinc sulphate, apomorphine, ipecacuanha, tartar emetic, etc.

PURGATIVES produce evacuation of the contents of the intestinal canal by increasing secretion along the tract, by exciting peristaltic action, etc. Examples: Podophyllum, colocynth, jalap, croton oil, magnesium sulphate, etc.
ASTRINGENTS.—Agents which produce contraction of muscular fiber, which coagulate albumen and lessen secretion from mucous membranes, arresting discharges. Examples: Tannic and gallic acids, alum, lead acetate, persulphate of iron, etc.

STOMACHICS.—Agents which increase the appetite and promote gastric digestion. They also check fermentation and dispel accumulation of flatus. Examples: Peppermint, cardamom, ginger, capsicum, etc.

HEPATIC STIMULANTS (Cholagogues).—Agents which excite the liver and increase the functional activity of that organ so that the amount of bile is augmented, etc. Hepatic stimulants increase the activity of the liver-cells, while cholagogues remove the bile from the duodenum. Examples: Podophyllum, aloes, jalap, colocynth, mercurous chloride, etc.

HEPATIC DEPRESSANTS.—Agents which reduce the functional activity of the liver, having the opposite effect of the foregoing, that of diminishing the formation of the bile, urea, and glycogen. Examples: Opium, quinine, arsenic, antimony, etc.

ECBOLICS, OR OXYTOCICS.—Agents which stimulate the pregnant uterus and produce contraction of that organ, either by direct irritation of the muscles of the womb, or indirectly by affecting the uterine center of the cord. Examples: Ergot, cotton-root bark, savin, cimicifuga, etc.

EMMENAGOGUES.—Agents which stimulate the uterine muscular fibers and restore the normal menstrual function. Examples: Ergot, apiol, iron, etc.

APHRODISIACS.—Agents used to excite the function of the genital organs when they are morbidly depressed. Examples: Phosphorus, zinc phosphide, salts of iron, gold, or arsenic, etc.

ANAPHRODISIACS.—Agents which diminish the sexual desire. Examples: The bromides, camphor, etc.

MYDRIATICS.—Agents which cause dilatation of the pupil; used to temporarily destroy accommodation by causing paralysis of the ciliary muscle. Examples: Atropine and homatropine.

MYOTICS.—Agents acting in a manner contrary to that of the above,
producing contraction of the pupil by stimulating the circular muscular fibers of the iris and at the same time contracting the ciliary muscle. Examples: Pilocarpine, eserine, etc.

IRRITANTS.—Agents which are applied locally to the skin to produce certain effects, as rubefacients (simply reddening the skin); episptastics (blistering); pustulants (causing blebs in which is found pus); escharotics, or caustics (actually destroying the tissue). Examples: Mustard (rubefacient); cantharides (epispastic); croton oil (pustulant); caustic potassa, carbolic acid, and strong mineral acids (escharotics).

LOCAL SEDATIVES.—Agents which diminish irritation in the part to which applied, relieving local inflammation. Examples: Acetate of lead, opium, belladonna, etc.

DEMULCENTS.—Bland remedies used to allay and mechanically protect inflamed surfaces. They are used also internally for this purpose, as in acute inflammation of the alimentary canal. Examples: Mucilages of acacia, flaxseed, Iceland and Irish moss, elm, etc.

EMOLLIENTS resemble the above; are used externally to soften and soothe the irritated and abraded skin. Examples: Lard, olive oil, cacaobutter, etc.

ANTISEPTICS.—Agents which arrest putrefaction, either by preventing the growth of micro-organisms causing putrefactive decomposition or by destroying these micro-organisms. Examples: Carbolic acid, corrosive sublimate, etc.

DISINFECTANTS.—Some authorities limit the use of this term to those agents which destroy the micro-organisms. The terms antiseptic and disinfectant are frequently used interchangeably. Examples: Corrosive sublimate, carbolic acid, iodoform, zinc chloride, eucalyptol, etc.

ANTIZYMOTICS.—A term applied to agents which arrest fermentation. Examples: See above.

ANTHELMINTICS.—Agents which destroy such parasitic worms as infest the alimentary canal. Tæniafuges destroy tape-worms; vermifuges expel these intestinal parasites. Examples: Santonin, spigelia, chenopodium, etc. Tæniafuges: Filix mas, pelletierin, cusso, etc.
ANTIPARASITICS.—Agents which destroy those parasites which infest the human body externally. Examples: Mercurial preparations, chrysarobin, carbolic acid, cocculus, etc.

ANTIPERIODICS.—See above.

Thus far we have only very briefly called attention to therapeutical and physiological action of drugs, giving but a few examples. We will temporarily leave the further consideration of this, and for the time refer to the therapeutical agents themselves. ¹

¹ Sayre, in order to be comprehensive, briefly defines all chemicals, synthetic or organic, then used in medicine. I have deleted much of this as the primary value and the preponderance of the text is plant and animal drugs,—MM
PART II
DRUG DESCRIPTION

SECTION I.—ORGANIC DRUGS FROM THE VEGETABLE KINGDOM, DESCRIBED AND ARRANGED ACCORDING TO FAMILIES.

CRYPTOGAMS
(PLANTS PRODUCING SPORES)

ALGÆ

Structure very various, growing for the most part in water, mostly in stagnant water in warm climates, but some on moist rocks or ground, etc. Entirely cellular, producing fronds.

I. CHONDRUS—IRISH MOSS

CARRAGEEN

The dried plant Chondrus crispus Lyngbye. (Pam. Gigartinaceæ.)

BOTANICAL CHARACTERISTICS.—Thallus fleshy, cartilaginous, compressed, dividing into short, moniliform filaments. Antheridia or oogonia in superficial spots. Chondrus crispus has four vessels or capsules imbedded in the frond. Gigartina mamillosa (Chondrus mamillosa) has an oval one raised upon a short stalk, and its frond is slightly channeled toward the base.

SOURCE.—These plants inhabit the rocks on the American and European shores of the Atlantic Ocean. In the spring they are collected on the coast of New England and Ireland, the Massachusetts coast yielding about 15,000 barrels annually.

DESCRIPTION OF DRUG.—Yellowish or white, horny, translucent; many times forked; when softened in water, cartilaginous; shape of the segments varying from wedge-shaped to linear; at the apex emarginate or 2-lobed. It has a slight seaweed-like odor, and a mucilaginous, somewhat saline, taste.

TEST.—When one part of Chondrus is boiled for about ten minutes with thirty parts of water replacing water lost by evaporation, the solution should form a thick jelly upon cooling.
When softened in cold water chondrus should become gelatinous and transparent the thallus remaining nearly smooth and uniform and not swollen except at the tips.

A solution made by boiling 0.3 Gm. in 100 mils of water and filtering gives no precipitate on the addition of tannic acid T.S. (gelatin), and does not give a blue color when cold upon addition of iodine T.S. (starch).

CONSTITUENTS.—The principal constituent (go per cent.) is mucilage, which is precipitated by lead acetate; traces of iodine and bromine have also been detected. There seems to be no starch present, but the cell-walls acquire a dark blue color in contact with iodine (Flückiger). Literature rather contradictory as to the nature of its various constituents.

ACTION AND USES.—Demulcent and slightly nutritious. A dietetic is specially prepared from the powder, made in the form of jelly with water. Dose: 6 dr. (24 mils) in decoction.

2. FUCUS VESICULOSUS, N.F.—BLADDER-WRACK. The whole plant, Fu'cus vesiculo'sus Linné, growing on muddy rocks and floating to the shores of the North Atlantic and North Pacific Oceans, consists of long, flattened, branched fronds, upon which are dispersed blackish air-vessels (tubercles) in pairs, one on each side of the
midrib. These cavities contain thin, gelatinous matter, and bear on their inner walls, when young, hair or transparent filiform cells. Odor marine-like; taste mucilaginous and saline. “Wracks” or rock weeds of other species are also collected, such as Fucus nodosus. 2a. The medicinal properties probably lie in the inorganic matter, the ash of the plant containing chlorides, bromides, iodides, phosphates, and sulphates; the organic matter is mainly mucilage. The medicinal value of the drug as an alterative has been questioned; it is used in obesity. “The fl’ext. and extract are irrational, preparations, the only form in which to obtain the effects of the plant being the recent decoction (Shoemaker).”

Fucus, N.F., constitutes the dried thallus of the above plant, yielding not more than 20 per cent. of ash.

3. LAMINARIA.—SEA-GIRDLES or TANGLES. From Lamina’ria digita’ta Lamouroux. A dark-spored seaweed having a ribless expansion resembling a leafblade. The stipitate portion has been used in gynecology as a substitute for sponge in making sponge tents for dilating the cervical canal. Contains salts, mucilage, and mannite; the latter principle is especially prominent in another species—Laminaria saccharina—like the above, abundant on the sea-coast.

4. AGAR OR AGAR-AGAR U.S.P. IX.—The dried mucilaginous substance extracted from Gracilaria (Sphoercocus) lichenoides.

Gracilaria and other marine Algæ, growing along the eastern coast of Asia, particularly several species of Gelidium or Gloiopeltis (class Rhodophyceæ). Mostly in bundles 4 to 6 dm. in length, thin translucent, membranous, agglutinated pieces from 4 to 8 mm. in width; externally yellowish-white, shiny; tough when damp, brittle when dry; odor, slight; taste, mucilaginous. Tests show it to be insoluble in cold but slowly soluble in hot water. No gelatin or no starch, etc. TEST.—Practically the same as that for chondrus. Ash, not more than 5 per cent. Average dose, 10 Gm. (2 1/2 dr.).

ACTION AND USES.—Agar-agar is practically never used in medicine. It possesses demulcent and emulsifying properties in common with other species of Algæ. It is principally used at present in bacteriological laboratories as a culture medium for micro-organisms.

Agar-agar in the dry state passes through the stomach undigested and on reaching the bowels takes up water and swells considerably, thereby increasing the volume of the evacuations; it is therefore considered a laxative.

FUNGI

Spore-bearing plants destitute of chlorophyll and reproduced by means of spores, not by true seeds.
5. ERGOTA.—ERGOT

ERGOT. (Ergot of Rye)

The carefully dried sclerotium of fungus *Claviceps purpurea* Tulasne (Pam. Hypocreaceae), replacing the grains of rye, *Secale cereale* Linné (Gramineae), with not more than 5 per cent. of harmless seeds, fruits and other foreign matter.

DEVELOPMENT.—Selerotium described: The early stage of the fungus consists of a profuse growth of mycelium in the tissues and upon the surface of the young ovary. In the "sphacelia" stage, as it is called, a multitude of conidia (non-sexual spores) are produced on the ends of the hyphae after the conidial stage the mycelium at the base of the ovary becomes greatly increased and assumes a hard and compact form. It grows with considerable rapidity, and carries upon its summit the old sphacelia and the remains of the now destroyed ovary. The compact, horn-shaped, dark-colored body which results (and is official) is called the sclerotium, which occupies the position of the displaced ovary. This sclerotium remains dormant in winter, and in the spring produces spores, as follows: stalked receptacles (Fig. 3) grow up from the tissue of the ergot, in which are developed a number of perithecia (Fig. 4). These perithecia are somewhat flask-shaped cavities (Fig. 5) filled with asci (Fig. 5), the latter containing long, slender spores termed ascospores (Fig. 6), which again, by germinating on the rye and other grasses, give rise to a new growth, and to the development of *Claviceps*. Ergot, in short consists in its earliest stage of a mass of mycelium (threads or filaments of fungi) in and upon the growing ovary. Conidia are produced (non-sexual spores) in great abundance which quickly germinate.

Following the conidial stage the mycelium at the base of the ovary assumes a hard and compact form, increases in size, becoming a horn-shaped and dark-colored body, the so-called ergot. Such a compact mass of hyphae (the vegetative threads or filaments of the fungi) is called a sclerotium.

The official fungus grows on rye, but the ergot also grows on other grasses and some of these ergots from other grasses have been found to be stronger than that of rye. The different grades are Russian, German, Austrian, Spanish and Swedish.

PREPARATION AND PRESERVATION.—Ergot should be dried without artificial heat kept in tin or glass containers free from light. A few drops of chloroform or carbon tetrachloride should be added from time to time to prevent development of insects. The powdered drug should not be kept longer than one year. Suggestion for preservation—keep over slaked lime. Dip into ethereal solution of tolu and keep in stoppered bottles. Also by removing the oil from the drug.
**Fig. 2.** _Claviceps purpurea._
A. Young sclerotium, c, with old sphacelia, s. p. The apex of the dead ovary of rye. b. Upper part of A, in longitudinal section, showing sphacelia, s. C. Transverse section through the sphacelia, more highly magnified. m. The mycelium, surrounded with the hyphae. b. Bearing conidia. p. Conidia fallen off. m. The wall of the ovary. D. Germinating conidia, forming sporidia, s.—(Bouch.)

**Fig. 3.** Portion of horn-shaped sclerotium of _Claviceps purpurea_, bearing four stalked receptacles.

**Fig. 4.** Longitudinal section of a receptacle, magnified, showing the perithecia.

**Fig. 5.** A single peritheciun of _Claviceps purpurea_, magnified, showing the contained asci.

**Fig. 6.** Asci containing the long, slender ascospores.
DESCRIPTION OF DRUG.—The official ergot of rye is from 10 to 30 mm. ($\frac{2}{5}$ to $1\frac{1}{5}$ in.) long and from 2 to 6 mm. ($\frac{1}{12}$ to $\frac{1}{4}$ in.) in diameter. On other grasses it is usually of less size. Triangular, slightly curved, tapering toward, but obtuse at, the ends; externally purplish-black, internally whitish with pinkish lines; fracture short (not very brittle). If a portion be macerated in water containing hydrate of potassium or sodium, then carefully crushed under the blade of a spatula, the fragments of mycelium threads are plainly discernible under the microscope. Odor (especially in powder or when treated with an alkali) heavy and unpleasant; taste oily and disagreeable.

When more than one year old, it is unfit for use. Old ergot, which breaks with a sharp snap, is almost devoid of pinkish tinge upon the fracture, is hard and brittle between the teeth, and is comparatively odorless and tasteless, should be rejected.

CONSTITUENTS.—The active constituents of ergot are still somewhat in doubt due probably to the amorphous condition in which they exist. Barger and Carr have extracted a substance called ergotoxine (noncrystalline) to which the dangerously poisonous character of ergot is due including the power to produce gangrene. Barger and Dale have shown it to contain amines derived from amino acids. Two of especial physiological activity are:

- 1. p. Hydroxyphenylethylamine or (Tryamine) has action of same type as active constituents of suprarenal glands and substance chiefly concerned in standardization of ergot by rise in blood pressure.
- 2. b. Iminoazolethylamine (Ergamine) has an action of peculiar intensity on plain muscle especially on uterine muscle.

Ergotine an alkaloid thought by some to be identical with ergotonine. Ecboline same as cornutine. Others say ergotine and ecboline are identical. Different samples of ergot may contain very different amounts of the three main constituents. The yield of ash should not exceed 5 per cent.

Assay of Ergot.—The physiological test for ergot, originated by E. M. Houghton, consists in feeding the preparation or drug to roosters, and noting the blackened and gangrenous appearance produced in the comb and wattles. The rapidity with which this change takes place and the depth of color produced denote the strength of the drug. An assay of the drug can be made by estimating the proportion of cornutine present, which, according to Beckurts, is as follows: 25 Gm. of the drug are freed from oil by percolation with petroleum spirits, then dried and well shaken with 100 Gm. of ether and 1 Gm. of magnesia, the latter having been suspended in 20 mils of water.
After repeated agitation the mixture is allowed to stand for three or four hours. Then 60 Gm. of the clear ethereal solution (to 15 Gm. of ergot) are shaken four successive times with 25, 10, 10, and 10 mils of dilute HCl (0.5 per cent.), the united solutions rendered alkaline by NH₄OH, and the alkaloid shaken out with three successive portions of ether. On evaporation, drying, and weighing the somewhat crystalline yellowish-white cornutine the assay is completed. The results of such assay are unsatisfactory, but have proved of value as a check in qualitative estimations.

Preparation of Ergotin (Wiggers).—Treat ergot with ether to deprive it of fixed oil, then extract with hot alcohol, evaporate, and purify. It resembles cinchonic red, is soluble in alcohol, but insoluble in ether and water. Bonjeau's ergotin corresponds to a purified extract of ergot (aqueous extract, precipitated by alcohol, filtered, and evaporated); is soluble in alcohol and water.

ACTION AND USES.—Produces vascular contraction, especially of the arteries, all over the body. This property is said to be due to its action on the vasomotor centers in the cord. Because it contracts the arterioles it is hemostatic. The flow of urine is also diminished. It is ecbolic and parturient, powerfully exciting the pregnant uterus and expelling its contents. Recently it has been discovered to be of value in the treatment of insomnia, the sleep produced being more natural than that from other drugs.

Poisonous symptoms: dimness of vision, local anesthesia, and numbness are sometimes produced, even by medicinal doses. Antidotes: evacuants (stomach-pump, emetics, etc.), stimulants, nitrite of amyl, inhalations, friction, etc. Dose: 20 to 30 gr. (1.3 to 2 Gm.) in freshly prepared powder, wine, or fluidextract; ergotin solution, 1 to 3 gr. 0.65 to 0.2 Gm.)

OFFICIAL PREPARATIONS.

| Extractum Ergotae | Dose: 3 to 12 gr. (0.2 to 0.8 Gm.) |
| Fluidextractum Ergotae | Dose: 1/2 to 2 fl. dr. (2 to 8 mils) |

6. USTILAGO.—CORN SMUT. A fungous growth upon Zea mays, more particularly upon the inflorescence. Consists of blackish, irregular, roundish masses enveloping innumerable spores; of a disagreeable odor and taste. It contains probably sclerotic acid. Used as a parturient and emmenagogue. Dose: 15 to 30 gr. (1 to 2 Gm.).

7. AGARICUS ALBUS, N.F.—LARCH AGARIC. PURGING AGARIC. WHITE AGARIC. From Polyporus officinalis Fries. The internal, decorticated portion of the fungus comes in light, colorless, spongy masses of irregular shape. Taste sweetish, acrid, and bitter. In large doses cathartic. In doses of 8 gr., gradually increased to 1 dr., it has been found useful in checking nightsweats of phthisis. Surgeon's agaric, from Polyporus fomentarium Fries, is used externally as a styptic in hemorrhage.
7a. **FUNGUS CHIRURGORUM**.—Surgeon's Agaric. Same as Polyporus. See above.

8. **CEREVISIÆ** (Saccharomyces).—**FERMENTUM COMPRESSUM** (Compressed Yeast), N.F.—An organized ferment. Yeast is the name applied to the frothy scum that forms on the surface of saccharine liquids and rises from the bungholes of newly brewed beer. Under the microscope this froth is shown to consist of particles which multiply with extraordinary rapidity when placed in a moderately warm temperature. The globular forms are considered as the spores of a fungus belonging to the genus Torula, the cells of which are but slightly united, sometimes forming branching chains, the mycelium being almost absent. Yeast is employed in hastening the fermentation of worts and in leavening dough in bread-making. Bottom or sediment yeast is found on the bottom of fermenting vessels. Two quite distinct methods of brewing are produced, depending upon the employment of one or the other of these varieties of yeast. For the purpose of the bakery, yeast is dried and formed into cakes. Beer yeast is official in the B.P. Yeast, under the title of fermentum, was official in the U.S.P., 1820-40, 1860-80, used as a tonic, laxative, etc., but at present rarely employed. As a local remedy, as poultice, in treatment of eruptions of boils, it still finds some favor.

**LICHENES**

Consisting mainly of a thallus (often leaf-like), without stem and leaves, wholly cellular. Reproduced by spores.

---

Fig. 7.—Section of thallus of *Cetraria islandica* through an apothecium. *as.* Asci, three of which contain ascospores. *gon.* Gonidia.

Fig. 8.—*Cetraria islandica.*

Sayre's Materia Medica - Page 25
9. **CETRARIA**.—ICELAND MOSS. The entire plant, *Cetraria islandica* Acharius. Off. U. S. P. 1890. The crisp, leaf-like lobes are cartilaginous, whitish on the under surface, channeled and fringed at the margins. A strong decoction gelatinizes on cooling; taste mucilaginous and bitter. The Pharmacopoeia calls attention to the fact that the drug is frequently mixed with pine leaves, moss, and other lichens; from these it should be freed. Constituents: It is largely composed (70 per cent.) of lichen starch, lichenin, and isolichenin, a solution of the latter producing a blue color with iodine. Unlike the gum of chondrus, it furnishes but a trace of mucic acid when treated with nitric acid. Boiling with dilute acids converts the mucilage into sugar solution. A solution of Iceland moss is precipitated by alcohol. The bitter principle, cetraric acid (cetrarin, $C_{18}H_{16}O_{8}$), forms yellow salts, which are equal in bitterness to quinine; this bitter principle may be removed by prolonged maceration in water, or, still better, by treating the drug with twenty-four times its weight of a weak solution of an alkaline carbonate. Demulcent, nutritive, and, if the bitter principle be present, tonic; used in advanced stages of phthisis when stronger remedies are unsuitable. Dose: 30 to 60 gr. (2 to 4 Gm.).

Preparation of Cetrarin: Boil drug with alcohol; express and add acidulated (HCl) water to the filtrate; then allow cetrarin to deposit.

10. **LITMUS**.—A fermented coloring extract from various species of lichens (e.g., *Lecanora tartarea*), other varieties of which also yield the dyes orchil and cudbear. Habitat: Northern Europe and African coast, and adjacent islands. Litmus is in about $1/2$ to 1 inch rectangular cakes, blue, light, friable, finely granular. Unlike most vegetable dyes, it is not turned green by alkali. It is turned red by acids, for which it is used as a test in the form of infusion (tincture), or litmus paper, made by dipping unsized paper in the strong infusion.

10 a. **Orchil** is a purplish-red, thickish liquid, with an ammoniacal odor.
10 b. **Cudbear** (Persio, N.F.) is a purplish-red powder, sometimes used to color preparations.

**POLYTRICACEAE**

11. **POLYTRICHUM JUNIPERUM** Hedwig.—HAIR-CAP MOSS. This common moss is a powerful diuretic; in full doses given at very short intervals it has proved very beneficial in dropsy. Dose: 1 to 2 dr. (4 to 8 Gm.), in infusion.

**FILICES**.—Ferns

Leafy plants with the fronds raised on a stipe (petiole) rising from a rhizome, circinate in vernation. The spore-cases are found on the under side of the frond. The life history of the fern is as follows:

When the minute spore from the sporangium on the frond drops to the ground, it germinates into a more or less heart-shaped body called a prothallus. The under surface of this body is provided with root-hairs.
and also female organs of generation, archegonia, and male organs, antheridia; the frond-stage is a direct outgrowth from the fertilized archegonia.

Synopsis of Drugs from the Filices

A. Rhizome.  
**ASPIDIUM**, 12.  
B. Herb.  
Adiantum, 13.  
C. Hairs.  
Cibotium, 14.  
D. Root.  
Osmunda, 16.  
E. Leaves.  
Polypodium, 15.

12. ASPIDIUM.—ASPIDIUM

MALE FERN.

![Diagram of male fern](image)

Fig. 9.—*Dryopteris filix-mas*—Plant and section through spore case.
The dried rhizome of *Dryopteris filix-mas* Schott, and of *Dryopteris marginalis* Asa Gray (family Polypodiaceae). Collected in autumn, freed from the roots and dead portions of rhizome and stipes, and dried at a temperature not exceeding 70°C.

BOTANICAL CHARACTERISTICS.—Fruit-dots round, borne at the back of the veins; indusium covering the sporangia. Stipe continuous with the root-stock. Frond lanceolate (*A. filix-mas*) or ovate-oblong (*A. marginalis*); fruit-dots in the former nearer the mid-vein than the margin, in the latter nearer the margin.

HABITAT.—North America.

DESCRIPTION OF DRUG.—As taken from the ground the rhizome consists of a caudex around which are arranged the dark brown, somewhat curved leaf-stalk remnants or stipes, about 25 to 50 Mm- (1 to 2 in.) in length, imbricated like the shingles of a roof; at the base they are densely surrounded by thin, glossy, chaffy scales of a lighter color and somewhat transparent. The entire rhizome is from 100 to 300 mm- (4 to 12 in.) long, and from 50 to 62 mm. (2 to 2 1/2 in.) thick, flexible, tapering toward one end, usually split longitudinally, roughly scarred with remains of stipe bases or bearing several coarse longitudinal ridges or grooves, pale green when fresh and becoming pale brown and with occasional elongated areas of the still adhering brownish-black outer layers, fracture short, pale green in the inner half, the texture rather spongy and exhibiting from 6 to 12 fibrovascular bundles in a loose and interrupted circle; it generally comes into market broken into pieces of various lengths; internally pale green, spongy or corky; odor slight and disagreeable; taste sweetish, somewhat bitter and astringent, acrid and nauseous. Only such portions as are still green should be used in making preparations. The deterioration of the root is rapid—loses its activity in one or two years.

MICROSCOPICAL STRUCTURE.—The prevailing tissue is parenchyma, the polyhedral, porous-walled cells of which contain starch, greenish or brownish tannin-like substances, and drops of a greenish fixed oil. The thin subserous outer layer consists of smaller brown cells. Toward the center of the rhizome is an irregular circle of ten (*A. filixmas*) or six (*A. marginalis*) vascular bundles, outside of which are
smaller scattered bundles. Distributed throughout the tissue are large air pores.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

CONSTITUENTS.—Filicic acid, C_{35}H_{42}O_{13}, filicin (filicic acid anhydrid, C_{31}H_{40}O_{12}), aspidin, C_{23}H_{27}O_{7}, the latter being poisonous, fixed oil, a trace of volatile oil, and chlorophyll. Ash 3 per cent.

Preparation of Filicic Acid.—This principle is deposited as a granular sediment when the oleoresin is allowed to stand.

ACTION AND USES.—Taeniafuge. Dose: 1/2 to 2 dr. (2 to 8 Gm.). The oleo resin is the most efficient preparation.

OFFICIAL PREPARATION.

Oleoresina Aspidii, Dose: 1/2 to 1 fl. dr. (2 to 4 mils)

13. ADIANTUM.—MAIDENHAIR. Adian'tum peda'tum Linné, an indigenous fern which has been used as a pectoral in chronic catarrh and other affections of the air-passages.

14. CIBOTIUM.—PENGHAWAR. PAKU-KIDANG. The chaffy hairs collected from the base of the fronds and stems of many varieties of ferns especially of the genus Cibotium, growing in Sumatra and Java. Long, silky, yellowish or brownish, curling filaments (under the microscope flat and jointed), used to stop the flow of blood from capillaries by mechanical absorption of the serum.


16. OSMUNDA REGALIS Linné (order Osmundaceae).—BUCK-THORN BRAKE. A common fern in swamps, the root-stock of which is used as a demulcent, tonic, and styptic. Dose of fl'ext.: 1 to 3 fl. dr. (4 to 12 Mils).

EQUISETACEAE.—Horsetail Family

17. EQUISETUM.—SCOURING RUSH. The herb of Equisetum hyema'le Linné. Habitat: Northern United States. Diuretic and astringent. Dose of fl'ext.: 15 to 60 drops (1 to 4 mils).
LYCOPODIACEÆ.—Club-moss Family

Low plants looking like very large mosses, more or less branching, and with the 1- to 3-celled sporangia (spore-cases) in the axils of the lanceolate, subulate, or rounded, persistent leaves. Spores homogeneous.

18. LYCOPODIUM.—LYCOPODIUM

VEGETABLE SULPHUR

The spores of Lycopo'dium clava'tum Linné, and of other species of Lycopodium.

BOTANICAL CHARACTERISTICS.—Stem creeping extensively, with ascending very leafy branches. Leaves linear-awl-shaped, aristate. Spikes 1 to 4 on a slender peduncle 4 to 6 inches long.

SOURCE AND COLLECTION.—Europe, Asia, and North America; collected mostly in Russia, Germany, and Switzerland, in July and August, by cutting off tops of the moss, shaking out spores, and sifting.

DESCRIPTION OF DRUG.—A fine, pale-yellowish powder, very mobile, free from odor and taste. It floats in water without being wet by it (due to the fixed oil), but sinks on being boiled. When slowly heated it burns quietly and should not leave more than 5 per cent. of ash, but when thrown into a flame it flashes up. Under the microscope the granules are seen to be tetrahedral, the basal side convex and the other three coming together to form a triangular pyramid. The surfaces are traversed in all directions by ridges which form regular, five- or six-sided meshes; at the points of intersection are small elevations, and along the edges short projections. Like lupulin, lycopodium is one of the interesting objects for microscopic study. Pollen of pine, an illustration of which is shown above, is sometimes used as an adulterant.

ADULTERANTS.—These may be easily detected by the microscope or simple tests. Pine pollen consists of an elliptical cell with a globular cell...
attached to each end. Starch is detected with iodine; turmeric, by turning reddish-brown with alkalies; inorganic mixtures, by increasing the yield of ash over 5 per cent., and by sinking in carbon disulphide. Dextrin has been found in lycopodium to the extent of 50 per cent.


CONSTITUENTS.—Fixed Oil 47 to 50 per cent., volatile bases in very small quantity, and ash containing alumina and phosphoric acid, not exceeding 3 per cent.

ACTION AND USES.—Absorbent and protective application to excoriated surfaces; in pharmacy, to facilitate the rolling of pill masses, and to prevent the adhesion of the pills.

PHANEROGAMS

(Plants producing true seed)

Pinaceae.—Pine Family

Trees or shrubs with a resinous juice. The wood differs from that of dicotyledons in that it is destitute of ducts, but has instead bordered disks. The leaves are usually fascicled, and are mostly awl- or needle-shaped. Fruit a cone or galbulus.

Synopsis of Drugs from the Pinaceæ

A. Tops.
   SABINA, 19.
   Juniperus Virginiana, 20.
   Thuja, 22.
B. Fruits.
   *Juniperus, 23.
C. Barks.
   *Pinus Alba, 21.
   Tsuga, 25.
   Larix, 26.
D. Oleoresins.
   *Terebinthina, 27.

*Venice Turpentine,
   27 a.
TEREBINTHINA
   CANADENSIS, 29.
Pix Canadensis, 30.
PIX LIQUIDA, 28.
Pix Burgundica, 31.

Volatile Oils.
OLEUM SABINÆ, 19 a.
OLEUM JUNIPERI, 23 a.

OLÆUM CADINUM, 24.
OLÆUM TEREBIN-
   THINÆ, 27 b.
OLÆUM PICIS LIQ-
   UIDÆ, 28 a.
Oleum Succini, 32 a.
F. Resins.
   RESINA, 27 c.
   Succinum, 32.
   Dammara, 33.
   Kauri, 34.
   Sandaracca, 35.
19. SABINA.—SABINA

SAVINE

The tops of *Juniperus sabina* Linné. The young and tender green shoots are stripped off in the spring, coming into the market as **short, thin, quadrangular branchlets**, clothed with alternate pairs of minute, opposite, scale-like leaves, appressed (more pointed and divergent in older twigs); each scale has a shallow groove and a conspicuous, depressed oil-gland in the back. The berry-like cone fruit is about the size of a pea, situated on a short, **recurved pedicel**, and covered with a bluish bloom; it is dry, but abounds in essential oil, and contains from 1 to 4 small, bony seeds. Odor strong, balsamic; taste bitter and acrid. Adulteration: Red cedar tops (20).

Powder.—Yellowish-brown. The microscopic elements consist of: Tracheids with bordered pits; parenchyma with numerous stomata; long bast fibers and starch grains.

CONSTITUENTS.—Tannin, resin, gum, etc., and a **volatile oil** (19 a) (2 per cent. in tops, 10 per cent. in berries) having the same composition as oil of turpentine.

ACTION AND USES.—Savine is an irritant, acting especially as a **uterine stimulant**; also diuretic, emmenagogue, and vermifuge. Dose: 5 to 15 gr. (0.3 to 1 Gm.). It is used externally in ointment as a stimulant dressing for bruises.

19 a. **OLEUM SABINÆ**.—OIL OF SAVINE. A nearly colorless, sometimes yellow, limpid, volatile oil, having a strong, terebinthinate odor, and a bitterish, intensely acrid taste. It has the same composition as oil of turpentine. Dose: 1 to 5 drops (0.065 to 0.3 mils)
20. **JUNIPERUS VIRGINIANA**.—The tops of the red cedar, or American saivne, are often used to adulterate saivne, from which they can scarcely be recognized except by difference in taste and smell. The galbulus of the false variety is borne on an erect pedicel.

21. **Pinus Alba** N.F. Lin.—**WHITE PINE**. The inner bark of **Pinus strobus** (Weymouth Pine), from eastern and central North America. In flat pieces about 6 inches long by 3 inches in width and 1/24 inch in thickness. Bark brittle, fracture irregular, not fibrous, but showing several woody layers. Reddish-brown streaked with gray outside; inner, yellowish blotched with light brown; bland odor; mucilaginous, slightly bitter and astringent taste.

**PROPERTIES.**—Those of balsamic preparations generally.

**USES.**—An emollient and expectorant in chronic affections of air-passages. Dose of fluidextract: 1/2 to 1 fluidrachm (2 to 4 mils).

21a. **PINUS MONTANA MILLER**.—**Pinus Pumilio Haenke**—Dwarf Pine. From the fresh leaves of this dwarf pine a volatile oil is obtained which is official in the U.S.P. IX as **Oleum Pini Pumilionis**, Oil of Dwarf Pine Needles. It is employed as an inhalent in catarrh of the respiratory passages, chronic laryngitis and bronchitis; used locally in treatment of chronic rheumatic affections and when added to ether allays irritation and diminishes bronchial secretion.

22. **THUJA N.F.**—**ARBOR VITÆ**. The leafy tops of **Thu'ja occidenta'lis** Linné, a North American evergreen tree. Small flattened twigs having a scalloped appearance, due to the flat, lateral leaf-scales, each of which has an oilgland near its apex; the other leaves folded lengthwise, boat-shaped, mostly glandless; odor balsamic, somewhat terebinthinate; taste pungently aromatic, camphoraceous, and bitter. The medicinal properties of Thuja depend mainly upon a volatile oil. It resembles saivne in its general action. Dose: 15 to 60 gr. (1 to 4 Gm.), in infusion or fl'ext.

23. **JUNIPERUS, N.F.**—**JUNIPER BERRIES**. The fruit of **Junip'erus commu'nis** Linné, an evergreen shrub or small tree inhabiting the Northern Hemisphere, bearing small cones, the scales of which coalesce in threes, become fleshy, and ripen into the so-called berry. These berries or fruits are globular, about the size of a large pea, with a triangular depression at the top caused by a three-rayed furrow where the scales are united; at the base are a few small scales, remnants of undeveloped whorls; externally of a glossy, purplishblack color, covered with a grayish bloom; they contain a brownish-yellow pulp with oil-glands, in which are imbedded three small, bony, angular seeds, also covered with large oil-glands; odor disagreeably aromatic, balsamic; taste sweetish, warm, and balsamic, slightly bitter. The Smyrna berry from **J. phoeniceæ** Linné, yields an oil of greater optical activity.

**CONSTITUENTS.**—**Volatile oil**, most abundant in the full-grown green berries, being partially converted into resins on ripening, entirely so in the dead-ripe, black
berries; also juniperin, sugar (15 to 30 per cent.), wax, fat, proteids, mucilage, etc. Their virtues are extracted by water and alcohol.

ACTION AND USES.—Stimulant and diuretic, chiefly used as an adjuvant to more powerful diuretics in dropsical complaints. Dose: 15 to 60 gr. (1 to 4 Gm.), in infusion, water spirit, etc., the volatile oil, however, obtained from the wood and branches, being principally used. They are largely used in the manufacture of gin, which owes its diuretic properties to them.

23a. **OLEUM JUNIPERI**, U.S.—OIL OF JUNIPER. A colorless or greenish-yellow volatile oil, with a strong, terebinthinate odor and a hot, acrid taste. Specific gravity 0.850 to 0.865. It consists of pinene, $C_{10}H_{16}$, cadinene, and juniper camphor.

**OFFICIAL PREPARATIONS.**

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Concentration</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spiritus J uniperi</td>
<td>5 per cent.</td>
<td>30 drops (2 mils)</td>
</tr>
<tr>
<td>Spiritus J uniperi Co.</td>
<td>0.4 per cent.</td>
<td>2 fldr. (8 mils)</td>
</tr>
</tbody>
</table>

24. **OLEUM CADINUM.**—OIL OF CADE (Oleum J uniperi Empyreumaticum)

**JUNIPER TAR OIL**

An empyreumatic, oily liquid obtained from the heart-wood of *Juniperus oxycedrus* Linné, by dry distillation in ovens.

BOTANICAL CHARACTERISTICS.—A tree 10 to 12 feet high, with spreading top and drooping twigs. Leaves awl-shaped. Fruit globular, reddish-brown, about the size of a filbert.

HABITAT.—Mediterranean Basin.

DESCRIPTION OF DRUG.—A brownish or dark brown, oily liquid, less thick and more mobile than tar, having a tarry but characteristic odor, and an aromatic, bitter, and acrid taste.

ACTION AND USES.—Used mostly externally in the treatment of cutaneous diseases and as an insecticide in the form of liniments, ointments, or soaps. Dose: 3 drops (0.2 Mil).

25. **TSUGA CANADENSIS** Carriere.—HEMLOCK SPRUCE. (Bark.) Tonic and astringent. Dose: 15 to 60 gr. (1 to 4 Gm.).

26. **LARIX AMERICANA** Michaux.—TAMARAC. AMERICAN LARCH. (Bark.) Tonic and gently astringent, its chief action being upon mucous membranes. Dose: $\frac{1}{2}$
27. TEREBINTHINA, N.F.—TURPENTINE

TURPENTINE

A concrete oleoresin obtained from Pinus palustris Miller (Fam. Pinaceae, U.S.P. 1900), and other species of Pinus.

BOTANICAL CHARACTERISTICS.—A large tree, 60 to 100 feet, with thin, scaled bark, and hard, very resinous wood. Leaves 10 to 15 inches long, in threes, from long sheaths. Sterile flowers rose-purple. Cones large, cylindrical or conical-oblong.

SOURCE AND COLLECTION.—Southern United States, particularly North Carolina. The oleoresin is secreted in the sapwood; some of it flows spontaneously, but it is generally obtained by a process called “boxing,” as follows: During the winter from one to four excavations, each holding from 4 to 8 pints, are cut into the tree through the sapwood. After a few days the bark above these cavities is removed for about a height of 3 feet, and some of the wood is hacked off, the hacks being in the shape of the letter L. The oleoresin begins to flow about the middle of March, and continues until September or October. The turpentine is removed by means of dippers constructed for the purpose, and then usually distilled. That which flows the first year is considered the best, being termed “virgin dip,” and yields about 6 gallons of oil per barrel, and “window-glass rosin;” that of the next and subsequent years is known as “yellow dip,” yielding about 4 gallons of oil per barrel, and medium grades of rosin. The turpentine which hardens on the tree is known as “scrapings,” and yields about 2 gallons of oil per barrel, leaving a dark resin.

DESCRIPTION OF DRUG.—In yellowish, opaque, tough masses, brittle in the cold, crumbly-crystalline in the interior, of a terebinthinate odor and taste. In warm weather it is a yellowish, viscid semiliquid when fresh, but ultimately, through exposure to the air, becomes perfectly dry and hard.

CONSTITUENTS.—Volatile Oil 20 to 30 per cent. (27b), abietinic anhydride, $C_{44}H_{62}O_4$, in rosin (27c), the acid of which, abiabetic acid, $C_{44}H_{64}O_5$, is crystalline, soluble in CS$_2$, benzol, alcohol, ether, chloroform, glacial acetic acid, and alkalies.
27a. **Terebinthinae Laricis, N. F.—Venice Turpentine.**—A yellowish or greenish liquid of honey-like consistence, collected in Switzerland and portions of France from *Larix europaea* De Candolle. Obtained by boring holes into the center of the wood and dipping the liquid out as it accumulates. It received its name from having formerly been almost entirely distributed from the Venetian port. Genuine Venice turpentine is comparatively scarce in the markets to-day, most of it being a factitious brown liquid made by dissolving rosin in oil of turpentine.

A number of other turpentines are obtained from various species of pine, larch, and fir, but hardly any of them enter our markets. The turpentines all agree in their medical properties, and differ only slightly in their physical characteristics, all of them being liquid at first, thickening through the evaporation and oxidation of their volatile oil, and ultimately solidifying. They melt by heat, and at a high temperature ignite with a white flame attended with dense smoke.

**CONSTITUENTS.**—**Volatile Oil** 20 to 30 per cent., **resin** (abietic anhydride, crystallizing out as abietic acid), a bitter principle, and traces of succinic and acetic acids.

**ACTION AND USES.**—The turpentines are rarely used internally, the volatile oil, to which the medicinal virtues are due, being used instead. Dose: 15 to 60 gr. (1 to 4 Gm.), in pills. Externally irritant and rubefacient, in ointments and plasters.

27b. **OLEUM TEREBINTHINÆ, U.S.—OIL OF TURPENTINE. SPIRITS OF TURPENTINE.** A volatile oil distilled from turpentine, the markets of the United States being chiefly supplied by the North Carolina forests. A perfectly limpid, colorless liquid when pure, but generally somewhat colored from resin contained, or from oxidation; odor peculiar, strong, penetrating; taste hot, pungent, somewhat bitter. It is very volatile and inflammable. When purified by distilling with caustic soda, it constitutes the Oleum Terebinthinæ Rectificatum, U.S., which is officially directed to be dispensed when oil of turpentine is required for internal use.

**CONSTITUENTS.**—Oil of turpentine consists of several terpene hydrocarbons having the formula C_{10}H_{16} (pinene), sp. gr. 0.855-0.870. When exposed to the air, it becomes thick from the oxidation of some of these hydrocarbons into resin. When the rectified oil is treated with nitric acid, large crystals of terpin hydrate (Terpine Hydras, U.S.) separate out, having properties similar to the oil of turpentine. Dose, 2 gr. (0.1 Gm.). The European turpentine oil contains pinene and sylvestrine; it forms with hydrochloric acid a crystalline compound, C_{10}H_{16}HCl (artificial camphor).

**Terebenum** is a liquid derived from the oil (consisting chiefly of pinene) by treatment with sulphuric acid, boiling point 156º-160ºC. Dose: 8 drops (0.5 mil).

**ACTION AND USES.**—Stimulant, diuretic, hemostatic, occasionally diaphoretic; in large doses anthelmintic and cathartic; externally rubefacient, in rheumatism, etc. As a stimulant it is often beneficial in low forms of fever, and, when death is inevitable, to prolong life beyond the natural limit. Dose: 5 to 15 drops (0.3 to 1 mil) in emulsion.
OFFICIAL PREPARATIONS.

- Linimentum Terebinthinæ (35 per cent. with resin cerate).
- Oleum Terebinthinæ Rectificatum. Dose, 5 to 15 drops (0.3 to 1 mil).
- Ceratum Cantharidis. Emulsum Olei Terebinthinæ.

27c. RESINA, U.S.—RESIN. ROSIN. COLOPHONY. The clarified residue left after distilling off the volatile oil from turpentine. It has been asserted that Pinus palustris, the official species, contains -more resin than any other German or American pine. When pure, rosin is of a clear, pellucid, amber color, but the commercial rosin is yellowish-brown, more or less dark, sometimes almost black, the color depending upon its purity and the amount of heat used in its preparation; it breaks with a shining, shallow, conchoidal fracture; odor and taste faintly terebinthinate. White rosin is an opaque variety made by incorporating it with water.

CONSTITUENTS.—Rosin is the anhydride of abietic acid, \( C_{44}H_{62}O_4 \), into which acid it may be converted by warming with dilute alcohol. Ash, 0.05 per cent.

ACTION AND USES.—An important ingredient of ointments and plasters, and is said to have the property of preserving them from rancidity by preventing the oxidation of the fatty base.

OFFICIAL PREPARATION. Emplastrum Resinae.

28. PIX LIQUIDA.-TAR

TAR

SOURCE.—An empyreumatic oleoresin obtained by the destructive distillation of the wood of Pinus palustris Miller, and of other species of Pinus. The pine logs are cut into billets, and built up into a stack and covered with earth, as in making charcoal. Slow combustion is started through an opening in the top of the stack, and the resinous matter, as it melts out and collects in a cavity in the center, is drawn off into barrels.

DESCRIPTION.—A resinous, black semiliquid, of an empyreumatic, terebinthinate odor, and a sharp, bitterish, empyreumatic taste. Acid in reaction. Partly soluble in water.

Birch tar, Dagget, or Oleum Rusci, from Betula alba Linné, has an odor similar to that of Russian leather.

CONSTITUENTS.—Tar is a very complex substance, varying with the kind of wood, amount of resins present therein, and the care exercised in its preparation, the chief constituents being an empyreumatic volatile
oil, pyrocatechin, acetone, xylol, toluol, cresols (creosote), guaiacol, phenol, etc. The acid reaction which characterizes tar is due to acetic acid, obtained in an impure state as pyroligneous acid by distillation. In the retort is left behind the ordinary solid and fusible pitch of commerce.

ACTION AND USES.—Stimulant, irritant, insecticide, similar to, but less irritant than, the turpentines. Dose: 8 to 60 gr. (0.6 to 4 Gm.). The syrup is much used in pulmonary affections.

OFFICIAL PREPARATIONS.

Syrupus Picis Liquidæ (0.5 per cent) Dose: 1 to 4 fl. dr. (4 to 15 mils)

Unguentum Picis Liquidæ (50 per cent).

28a. OLEUM PICIS LIQUIDÆ RECTIFICATUM.—OIL OF TAR. A volatile oil distilled from tar, the residue left being common pitch, pix nigra. A nearly colorless liquid when first distilled, but soon acquires a dark, reddishbrown color; it has the characteristic odor and taste of tar, which depends upon it for its medicinal properties. Dose: 1 to 5 drops (0.065 to 0.3 mil), in capsules or emulsion.

29. TEREBINTHINA CANADENSIS.—CANADA TURPENTINE

CANADA BALSAM. BALSAM OF FIR

A liquid oleoresin obtained from A'bies balsam'ea Linné

HABITAT.—Canada, Nova Scotia, Maine, and the mountainous regions further south.

PRODUCTION.—The oleoresin is secreted in small vesicles in the bark, collected by puncturing and allowing the liquid to exude into a vessel having a broad and funnel-like lip. The vesicles contain only from a few minims to 1 fluid drachm.

DESCRIPTION OF DRUG.—A yellowish or faintly greenish, transparent liquid of honey-like consistence, becoming thicker and somewhat darker with age, but always retaining its transparency, and ultimately drying into a transparent mass; it has an agreeable, aromatic, terebinthinate odor, and a bitterish, feebly acrid, but not disagreeable taste, for which reason it is sometimes erroneously called balm of Gilead (98).

ACTION AND USES.—It has medical properties similar to the other turpentines and copaiba, but is rarely employed as a remedial agent. It is most valued for mounting microscopic objects, for which its
beautiful and durable, uncrystalline transparency peculiarly fits it.

OFFICIAL PREPARATION.

30. **PIX CANADENSIS.**—CANADA PITCH OR HEMLOCK PITCH. An oleoresin obtained from the North American hemlock spruce, *A'bies canaden'sis* Carriere. Resembles Pix Burgundica (31) in appearance, properties, and uses; it is somewhat darker red-brown in color and is much more fusible; odor weak, peculiar; taste very feeble. Rosin is a common adulteration.

31. **PIX BURGUNDICA.**—BURGUNDY PITCH. The resinous exudation prepared from *Abies excelsa* Poiret. A reddish-brown or yellowish-brown, opaque or translucent solid when pure, gradually taking the form of the vessel in which it is contained; brittle, breaking with a shining, conchoidal fracture; at body heat it becomes soft and adhesive; odor agreeable, somewhat aromatic, terebinthinate; taste aromatic and sweetish, not bitter. A mixture of common pitch, rosin, and turpentine melted together and agitated with water, is often substituted for Burgundy pitch, but may be detected by its insolubility in warm glacial acetic acid. Terebinthina cocta, a residue from the distillation of turpentine with water, and Resina pini (white turpentine), fused in hot water and strained, are allied products resembling the former, but these later become crystalline. Constituents: Volatile oil (smaller proportion than in turpentine), water, and resin. Gentle rubefacient and stimulant, in chronic rheumatism, etc., in plasters.

    **Emplastrum Picis Burgundicæ** U.S.P. 1890.
    **Emplastrum Picis Cantharidatum** (92 per cent., with cerate of cantharides), U.S.P. 1890.

32. **SUCCINUM.**—AMBER. A fossil resin from extinct coniferous trees, found in greater or less quantities in every quarter of the globe; the largest deposits occur in the region surrounding the Baltic Sea, where it has been washed upon the shore. In small, irregular pieces, usually light or deep yellowish-brown, sometimes reddish-brown, generally translucent; tasteless and odorless, but emits an agreeable, aromatic odor when heated. It is almost insoluble in water, alcohol, ether, or oils, slightly soluble in chloroform. Used for fumigation, for the preparation of succinic acid and oil of amber, and in the arts.

32a. **OLEUM SUCCINI.**—OIL OF AMBER. A light yellowish-brown or ambercolored liquid (colorless when pure), having a balsamic, empyreumatic odor, and a warm, acrid taste. On exposure to light and air it thickens and becomes darker, ultimately solidifying into a black mass. With fuming nitric acid it acquires a red color, changing after a time into a brown, resinous mass having a peculiar musk-like odor. It is often adulterated with oil of turpentine, which may be detected by its throwing down a solid camphor when hydrochloric acid gas is passed through the mixture. Stimulant, antispasmodic, and irritant. Dose: 5 to 15 drops (0.3 to 1 mil). Externally in liniments.

33. **DAMMARA.**—DAMMAR. GUM DAMMAR. A spontaneous, resinous exudation collected in the East Indies from *A'gathis dam'mara* Richard. Transparent, straw-
colored, rounded masses, almost free from odor and taste, and breaking with a glossy, conchoidal fracture. Used mostly for varnishes.

34. **KAURI RESIN**.—KAURI Gum. A resin dug in large quantities from the soil in New Zealand, where it has exuded from *Dammara orientalis*. It is in large cream-colored or amber-colored masses. Used as a vulnerary in skin diseases; also used as a substitute for collodion, leaving an adherent, impervious, resinous varnish over the wound.

35. **SANDARACCA**.—SANDARAC. A resin exuding spontaneously from the bark of a North African evergreen tree, *Callitris quadrivalvis* Ventenat. Small rounded masses about the size of a pea, of a yellowish color; it resembles mastic somewhat, and is often substituted for it on account of its lower price, but a simple means of distinction is afforded in its becoming pulverulent (not adhesive) when chewed. It was formerly used as a mild stimulant in ointments and plasters, but is now mostly used for varnishes. Its powder is used as a pounce to prevent ink from spreading on paper or cloth.

**GNETACEAE**

36. **EPHEDRA**.—The herb *Ephedra antisypilitica* C. A. Meyer. This plant is a native of Arizona, where it is used in venereal diseases. Dose of ext.: 1 to 2 fl. dr. (4 to 8 mils).

**GRAMINEÆ**.—Grass Family

A large order yielding the cereals (wheat, rye, etc.) and sugar cane, the source of most of the sugar of the market. The characteristics of the order are the hollow stems (culms), flowers in spikelets, and the fruit, a caryopsis.

### Synopsis of Drugs from Gramineæ

<table>
<thead>
<tr>
<th>A. Rhizome.</th>
<th>F. Starches.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRITICUM, 37.</td>
<td><em>AMYLUM</em>, 42.</td>
</tr>
<tr>
<td>B. Root.</td>
<td>a. Avenæ Farina.</td>
</tr>
<tr>
<td>Vetiveria, 38.</td>
<td>b. Sago.</td>
</tr>
<tr>
<td>C. Sugar.</td>
<td>c. Tapioca.</td>
</tr>
<tr>
<td>SACCHARUM, 39.</td>
<td>d. Taro.</td>
</tr>
<tr>
<td>D. Styles and Stigmas.</td>
<td>e. Triticum Vulgare.</td>
</tr>
<tr>
<td><em>ZEA</em>, 40.</td>
<td>f. Oryza.</td>
</tr>
<tr>
<td>E. Fixed Oil.</td>
<td>g. Solanum Tuberosum.</td>
</tr>
<tr>
<td>Oleum Maydis, 41.</td>
<td>h. Canna.</td>
</tr>
<tr>
<td></td>
<td>i. Maranta.</td>
</tr>
<tr>
<td><em>N.P.</em></td>
<td>j. Curcuma Leucorrhiza.</td>
</tr>
</tbody>
</table>

G. Fruit.  
H, Decorticated Fruit.  
Hordei Fructus, 43.  
Hordeum, 43 a.  
I. Germinated Seeds.  
Maltum, 43 b.  

Sayre's Materia Medica - Page 40
37. TRITICUM.—TRITICUM

COUCH-GRASS

The dried rhizome of *Agropyron repens* Beauvois.

BOTANICAL CHARACTERISTICS.—Creeping; root-stocks slender, numerous. Spikelets 4- to 8-flowered, glabrous; glumes 3- to 7-nerved; rachis glabrous; leaves flat.

HABITAT.—Europe; naturalized and grows abundantly in North America.

DESCRIPTION OF DRUG.—Short, hollow sections from 3 to 6 mm. (\(1/8\) to \(1/4\) in.) long, and about the thickness and color of a straw; odorless; taste sweetish.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

CONSTITUENTS.—No active constituent has been discovered in couchgrass; it contains glucose, mucilage, malates, triticin (a gummy substance resembling inulin), and inositol. Ash not to exceed 3 per cent.

Preparation of Triticin.—Obtained by exhausting powdered drug with water; neutralize with baryta; concentrate and precipitate with lead subacetate; remove lead; purify with charcoal; neutralize, concentrate, and precipitate with alcohol. It is an amorphous, white powder, inodorous, tasteless, deliquescent, and with HNO\(_3\) is oxidized into oxalic acid.

ACTION AND USES.—Diuretic, demulcent. Dose: \(1/2\) to 3 dr. (2 to 12 Gm.).

OFFICIAL PREPARATION.

*Fluidextractum Tritici* Dose: 1 to 4 fl. dr. (4 to 15 mils)

38. VETIVERIA.—VETIVERT. The fibrous wiry roots of *Andropogon muricatus* Retzius. Habitat: Eastern India. Tonic and stimulant, but mainly employed as a perfume in sachet powders, etc.

39. SACCHARUM.—SUGAR

CANE-SUGAR

The refined sugar obtained from *Saccharum officinarum* Linné, and from various species or varieties of Sorghum, also from one or more varieties of *Beta vulgaris*

Sayre's Materia Medica - Page 41
Linné (nat. ord. Chenopodiaceæ).

Fig. 16.—Spikelet of the Oat (Avena sativa).  
$q$. Glumes.  
$p$. $f$. Paleæ or pales.  
a. Awn.  
pl. 
An abortive flower.

Fig. 17.—Triticum vulgare (Wheat). Plant and flowers (enlarged).
Fig. 18.—*Agropyron repens*.

SOURCE AND VARIETIES.—The sugar cane is extensively cultivated in Africa, East and West Indies (especially Cuba), Brazil, and Southern United States, particularly Louisiana. The sugar beet is extensively cultivated in France and Spain, and has been introduced with varying success into some parts of the United States. Cane-sugar is also a constituent of the sugar maple; of the carrot and turnip, of cassia pulp, etc. The sugar in fresh fruit is mainly cane-sugar; by the action of the fruit acids, or a ferment, it is generally inverted, becomes uncrystalline, and influences polarized light in the opposite direction from that of cane-sugar, twisting the ray from right to left. Honey-sugar is probably a mixture of the two varieties—right- and left-handed. It is readily altered to a crystalline and granular mass of grape-sugar in dried fruit, as in the raisin, the prune, and solidified honey. This, the common form of grapesugar, is right-handed, and is called dextrose (dextrogyrate), to distinguish it from laevulose. Barley-sugar is made by heating canesugar till it fuses, becoming thus, in a great measure, uncrystalline. Molasses (treadle)—Syrupus fuscus (official 1860-1870)—is the result from the evaporation of cane-sugar syrup; it is a mixture of canesugar with uncrystallizable sugar and coloring matter.

DESCRIPTION.—Sugar or sucrose, C_{12}H_{22}O_{11}, is in “white, dry, hard, distinctly crystalline granules, odorless, and having a purely sweet taste. Permanent in the air.” The aqueous solution saturated at 15ºC (59ºF.) has a sp. gr. of 1.345 and is miscible with water in all proportions, soluble in 175 parts of alcohol.

OTHER SUGARS. Saccharum Lactis.—Lactose obtained from the whey of cows' milk and purified by recrystallization.

SOURCE AND DESCRIPTION.—It is prepared from cows' milk by evaporating the whey after removing the curd. Cows' milk contains from 4-5 to 4.9 per cent. of sugar. It crystallizes in large hard prisms, has a feebly sweet taste and is soluble in six parts of cold water. It occurs in white, hard crystalline masses or as a white powder feeling gritty to the tongue, odorless, permanent in air. Like cane-sugar it forms compounds with metallic oxides, and reduces alkaline copper solutions. Practically insoluble in alcohol, ether, or chloroform. It is not affected directly by ferments. When heated with mineral acids it forms dextrose and galactose.
ACTION AND USES.—When injected into the blood-vessels it appears unaltered in the urine. When taken in the alimentary canal it is perfectly assimilated. When administered in large doses it acts as an active diuretic. Milk loses this diuretic effect on being boiled. Used in making tablet triturates.

MANNOSE (from mannite); maltose (from starch by the action of dilute acid or diastase); melitose (from eucalyptus).

CARAMEL, N.F. is a name applied to burntsugar (Saccharumustum), used in the liquid form as a coloring for spirits, vinegar, etc.

SACCHARUM UVEUM.—Grape-sugar. Glucose. Yellowish or whitish masses or granules much less sweet than cane-sugar. Composition C₆H₁₂O₆H₂O

ACTION AND USES.—Demulcent and lenitive. Used in making the various syrups and compound syrups of the Pharmacopoeia, etc.

OFFICIAL PREPARATION.—Syrupus.

40. ZEA, N.F.—ZEA.

CORN-SILK

The dried styles and stigmas of Zea ma'ys Linné (our common Indian corn) Yellowish or greenish, soft, silky, hair-like threads, about 150 Mm. (6 in.) long; free from odor, with a sweetish taste. CONSTITUENTS.—Maizenic acid, fixed oil, resin, sugar, gum, albuminoids, phlobaphene, extractive, salt, cellulose, and water.

ACTION AND USES.—Mild stimulant, diuretic. The infusion may be taken ad libitum.

Fluidextractum Zea (Unofficial) Dose: 1/2 to 2 fl. dr. (2 to 8 mils).

41. OLEUM MAYDIS.—MAIZE OIL. A fixed oil expressed from the embryo of the seed of Zea mays Linné. A yellow, viscid, transparent liquid, having a peculiar odor like cornmeal, and a bland taste. This oil has become quite valuable commercially, used as salad oil and by hydrogenation yields a valuable vegetable fat. In making of liniments and oleaginous preparations, it is quite equal to olive oil. Demulcent.
STARCH

The starch grains obtained from the fruit of Zea mays Linné.

DESCRIPTION.—Usually in opaque, angular or columnar masses, easily pulverizable between the fingers, with a peculiar sound, into a fine white powder; odorless and tasteless. Under the microscope it is seen to be composed of small granules striated concentrically or excentrically around a nucleus or hilum. Insoluble in cold water, but with boiling water it forms a glutinous paste on cooling. Iodine is the test for starch, the characteristic blue color being produced when only a minute quantity of the latter is present.

Other starches—chiefly distinguished by the size and shape of the starch-granules as seen under the microscope:

(a) AVENÆ FARINÆ.—Oatmeal. From Avena sativa Linné, probably native to Western Asia, but now a common field crop. A grayish-white, not uniform meal, containing the gluten and fragments of the integuments; bitterish. Demulcent and nutritive (due to the gluten contained).

(b) SAGO.—Pearl Sago. Globular, pearl-like grains, white or brownish, prepared from Metroxylon sagu, M. rumphii, and other species growing in the East India Islands.

(c) TAPIOCA.—Cassava Starch. Yielded by the rhizomes of Brazilian plants, Manihot utilissima and M. aipi, nat. ord. Euphorbiaceae. White and opaque, irregular lumps.

(d) TARO.—Taro Flour. A starch prepared from the corm of Colocasia esculenta Schott, the food (poi) of the natives in Hawaii and the West Indies. Recommended as a diet for dyspeptic and consumptive patients.

Starches from the underground parts of Triticum vulgare and Oryza sativa, Gramineae; Solanum tuberosum (potato starch), Solanaceae; Canna edulis, Maranta arundinacea, and Curcuma leucorrhiza, Scitamineae.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.
CHEMICAL COMPOSITION.—Starch is the basis of that class of organic compounds termed carbohydrates. Its composition is $\text{C}_6\text{H}_{10}\text{O}_5$. By hydrolysis it is converted into a gummy principle, dextrin, and glucose. Ferments convert it into alcohol and carbon dioxide—$\text{C}_6\text{H}_{10}\text{O}_5 = 2\text{C}_2\text{H}_5\text{OH} + 2\text{CO}_2$. Ash. Not more than 0.5 per cent.

ACTION AND USES.—Nutritive and demulcent.

Sayre's Materia Medica - Page 47
OFFICIAL PREPARATION.

Glyceritum Amyli (10 per cent.).

Dextrinum Album, N.F. (White dextrine should not yield more than 0.5 per cent. of ash.)

43. HORDEI FRUCTUS.—BARLEY. The fruit of Hor'deum dis'tichum Linné, a common cultivated cereal indigenous to Western Asia. About 15 mm. (3/5 in.) long, tapering at the ends, on one side traversed by a longitudinal groove along which the grayish-yellow palea or husk is coalesced with the smooth, pale brown testa; underneath the testa is a layer of gluten surrounding the central starchy parenchyma. Nutritive.

43a. HORDEUM, or pearl barley, is the fruit deprived of its brown integuments.

43 b. MALTUM.—MALT (U.S.P.IX). Prepared from the fruit of Hordeum distichum Linné by soaking, and then allowing fermentation to proceed until the young embryo is nearly the length of the fruit; the fruit is then dried in the sun and afterward kiln-dried in order to kill the germ. The object of this process is to develop the greatest possible amount of diastase, a peculiar ferment which has the property of converting starch into sugar. Malt occurs in yellowish or ambered-colored grains crisp when fractured with a whitish interior. Its odor is agreeable and characteristic. The taste is sweetish due to the conversion of some of the starch into maltose by the diastase present. Malt should float in cold water. Malt is demulcent and nutrient, given in the form of the extract.

ACTION AND USES.—Demulcent and nutritive given in conjunction with other substances chiefly.

PREPARATION. Extractum Malti (liquid, of honey-like consistence).

CYPERACEÆ.—Sedge Family

44. CAREX ARENARIA Linné.—RED SEDGE. RADIX SARSAPARILLÆ GERMANICÆ. This sedge grows in the coast regions of Central and Northern Europe, where its rhizome is used as an alterative like sarsaparilla.

45. ADRUE.—GUINEA RUSH. The rhizome of Cy'perus articula'tus Linné, used in its native country to check vomiting and as a tonic. Dose of fl'ext.: 30 drops (2 Mils).

PALMÆ.—Palm Family

Synopsis of Drugs from the Palmæ

A. Seed.
   Areca, 46.
B. Fruit.
   SABAL, 47.
C. Root.
   Carnauba, 48.
D. Resin.
   Draconis Resina, 49.
E. Fixed Oils.
   Oleum Palmae, 50.
   Oleum Cocos, 51.
ARECA.—ARECA NUT. BETEL NUT. The seed of an East Indian tree, Are'ca cat'echu Linné. Roundish-conical, about 25 mm. (1 in.) long, flattened at the base; externally deep brown, varied with fawn-color, giving it a longitudinally-veined appearance; internally brownish-red with white veins. It abounds in tannin, and contains three alkaloids upon which its taeniafuge properties depend, arecoline, arecaine, and a trace of an undetermined alkaloid. Mixed with the leaves of Piper betel it forms the “betel” chewed so largely by the natives. It is strongly recommended as a taeniafuge and vermifuge. Dose: 2 to 3 dr. (8 to 12 Gm.).

47. SABAL

SABAL. (SAW PALMETTO)

The dried ripe fruit of Sereno'a serrula'ta (R. and S.) Hooker filius.

Irregularly spherical to oblong-ovoid; 10 to 25 mm. long, 10 to 15 mm. in diameter; externally blackish-brown, shrivelled, somewhat oily; epicarp thin, sarocarp about 1 mm. thick, greenish-yellow, soft, spongy, endocarp thin, friable; seed hard, chocolate-brown; odor aromatic; taste sweetish, acrid and oily. Tonic, diuretic, expectorant, and sedative, used in neuralgic affections to allay irritation of mucous membranes, and in pulmonary affections. Dose of fl'ext.: 1/2 to 2 fl. dr.

OFFICIAL PREPARATION.—Fluidextractum. Dose: 1 mil (15 drops).

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

CARNAUBA.—The root of Coper'nica cerif'era) Martius, used in Brazil, where the plant grows, as an alterative like sarsaparilla, stillingia, etc. Dose: 1.5 to 60 gr. (1 to 4 Gm.).

49. DRACONIS RESINA.—DRAGON'S BLOOD. A spontaneous resinous exudation from the ripening fruit of Cal'amus dra'co Willdenow. Habitat: East Indies, Siam, and the Molucca Islands. A dark brownish-red, internally brighter red resin, coming
into market in various forms, small granules, oval pieces in bead-like strings, sticks, and the poorer varieties in cakes and disks; breaks with a dull, irregular fracture; tasteless and almost odorless, but when heated emits a benzoin-like odor due to the benzoic acid which it contains. The red resin, constituting 90 per. cent., has been termed draconin. The use of dragon's blood is almost entirely confined to the manufacture of paints and varnishes.

50. **OLEUM PALMÆ**—Palm Oil. A fixed oil expressed from the fruit of *Elæis Guineen'sis* Jacquin, a West African palm cultivated in tropical America. A solid fat, harder than butter, of an orange-red color, bleaching upon exposure to light or heat. When fresh, it has a violet-like odor and a bland taste, but it rapidly becomes rancid and of an acrid taste. It is used principally in the manufacture of soaps and candles, occasionally in ointments.

51. **OLEUM COCOIS**—Cocoanut Oil. A fixed oil expressed from the seeds of the tropical palm, *Co'cos nucif'era* Linné. A white solid, of the consistence of butter, and with a disagreeable odor. It is mostly used in soaps.

**AROIDÆ.**—Arum Family

Herbs with an exceedingly acrid, colorless juice, and having a fleshy corm or rhizome. Inflorescence a spadix usually surrounded by a spathê. Fruit a berry.

<table>
<thead>
<tr>
<th>Synopsis of drugs from the Aroidæ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Rhizomes.</td>
</tr>
<tr>
<td><strong>CALAMUS</strong>, 52.</td>
</tr>
</tbody>
</table>

52. **CALAMUS**.—**CALAMUS**

**SWEET FLAG**

The dried rhizome of *Acor'us cal'amus* Linné (Fam. Araceæ, U. S. P. 1900).

**DESCRIPTION OF DRUG.**—Grows in swamps, and along the banks of streams and ponds. Subcylindrical sections of various lengths, about 20 mm. (4/5 in.) thick; externally reddish-brown, deeply wrinkled, marked below with rootlet scars (little elongated dot-like rings) in wavy, longitudinal lines, above with leaf-scars; fracture short, corky, showing a pinkish or whitish interior dotted with yellowish or brownish dots, both in the thick cortical layer and in the spongy central column; odor aromatic; taste peculiar, very bitter. Although the unpeeled rhizome is directed, the pinkish-white sections deprived of the corky layer are often met with in market.

**STRUCTURE.**—The tissue is chiefly parenchyma, traversed by yellowish fibrovascular bundles, most abundant just within and near the nucleus sheath. The
cells of the parenchyma are filled with starch and volatile oil, the latter most abundant in the cortical layer. The spongy appearance of the central portion is due to large air-cells, as in all aquatic plants.

CONSTITUENTS.—Volatile oil 1 to 2 per cent., having the smell and taste of calamus, a bitter glucoside termed acorin (syrupy, yellow liquid), calamine, choline, resin, starch, and mucilage.
Isolation of Acorin.—A concentrated decoction of the drug is deprived of gum by precipitating with alcohol. The liquid is then treated with lead subacetate. The lead is removed by H₂S. The resulting liquid, after neutralization, is shaken with chloroform, which leaves on evaporation a thin, yellow, aromatic liquid, acorin. This splits into oil and sugar by hydration; by oxidation the resin and acoretin are obtained.

ACTION AND USES.—Tonic and carminative, and a feeble aromatic stimulant. Dose: 15 to 60 gr. (1 to 4 Gm.).

53. SYMPLOCARPUS.—SKUNK CABBAGE. The rhizome and roots of an indigenous herb, *Symplocarpus foetidus* Salisbury, so called from the disagreeable odor (depending upon a volatile oil) which is emitted by all parts of the fresh plant, and by the dried rhizome when triturated. It has an acrid taste, but the acrid principle has not yet been isolated. Stimulant, antispasmodic, and narcotic, causing nausea and vomiting, together with vertigo, headache, and dimness of vision. It has been used in asthma, whooping-cough, nervous and convulsive affections, and hysteria; also in chronic catarrh, chronic rheumatism, and bronchial and pulmonary affections. Dose: 10 to 20 gr. (0.6 to 1.3 Gm.).

54. ARUM.—INDIAN TURNIP. The corm of *Arisaema* (Arum) *triphyllum* Torrey (jack-in-the-pulpit or wake-robin). Habitat: North America, in rich woods. Depressed-globular, about 25 to 50 mm. (1 to 2 in.) in diameter, covered with a loose, wrinkled, brown epidermis; it often comes into market in white, starchy, transverse slices; inodorous; very acrid. This acrid principle is volatile, the fully dried corm being nearly inert. Arum has been used as a stimulant to the secretions in asthma, whooping-cough, chronic catarrh, and rheumatism. Dose: 8 to 15 gr. (0.5 to 1 Gm.).

55. ARISAEMA DRACONIUM Schott.—GREEN DRAGON. Habitat: United States, west to Kansas. (Corm.) Diaphoretic and expectorant in dry, hacking coughs attended with irritation. Dose of f’ext.: 1 to 10 drops (0.065 to 0.6 mil).

COMMELINACEÆ.—Spiderwort Family

56. COMMELINA.—ASIATIC DAY FLOWER. From *Commelina communis*. This plant has recently been brought to notice as one of medicinal value. It is claimed to have peculiar hemostatic and healing properties. An account of the plant and a report of a chemical examination of it is found in the “Am. Jour. of Pharm.,” July, 1898, p. 321.

BROMELIACEÆ.—Pineapple Family

57. ANANASSA.—PINEAPPLE. The fruit of *Ananas'sasati'va* Schultz. The fresh juice contains the digestive ferment, bromelin, which is a powerful and rapid digestant of albumen, both animal and vegetable, acting in the presence of either acid or alkaline carbonates, but most energetically in neutral solutions. It is more nearly related to trypsin than to pepsin.
LILIACEÆ.—Lily Family

Herbs (rarely woody) with flowering stems springing from bulbs or corms, with the leaves parallel-nerved, except in the tribe Smilaceae, where they are netted veined. The perianth consists of six divisions; anthers introrse; ovary superior, usually 3-celled.

Synopsis of Drugs from the Liliaceae

<table>
<thead>
<tr>
<th>A. Root</th>
<th>C. Bulbs</th>
<th>F. Insipissated Juices</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARSAPARILLA, 58.</td>
<td>*Allium, 66.</td>
<td>ALOE, 70.</td>
</tr>
<tr>
<td>Rhizomes.</td>
<td>SCILLA, 67.</td>
<td>Aloe Barbadensis, 70 a.</td>
</tr>
<tr>
<td>*Convallaria, 59.</td>
<td>D. Corm.</td>
<td>Aloe Capensis, 70 b.</td>
</tr>
<tr>
<td>VERATRUM, 60.</td>
<td>COLCHICI COR-MUS, 68.</td>
<td>Aloe Socotrina, 70 c.</td>
</tr>
<tr>
<td>Polygonatum, 62.</td>
<td>COLCHICI SEMEN, 69.</td>
<td>Xanthorrhoea, 71.</td>
</tr>
<tr>
<td>Chamælirium, 63.</td>
<td>Sabadilla, 61.</td>
<td>H. Leaves.</td>
</tr>
<tr>
<td>*Trillium, 64.</td>
<td></td>
<td>Erythronium, 72.</td>
</tr>
<tr>
<td>Asparagus, 65.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

58. SARSAPARILLA.—SARSAPARILLA

The dried root of Smi' lax officinalis Kunth, Smi' lax med'ica Chamisso et Schlechtendal, Smilax papyra'ce a Duhamel, Smilax ornata Hooker, and of other undetermined species of Smilax.

BOTANICAL CHARACTERISTICS.—Evergreen, climbing, shrubby plants. Stem prickly. Leaves alternate, netted-veined, coriaceous, ovate-oblong, with a cordate base, 1 foot long and 4 to 5 inches broad. Flowers in axillary clusters, dioecious; stigmas 3, sessile. Fruit a globular, 1- to 3-seeded berry.

HABITAT.—Tropical America, in swampy forests.

DESCRIPTION OF DRUG.—The varieties used in medicine have a thick, knotty rhizome (which, if present, should be removed) from which grow in a horizontal direction the fleshy roots. These appear in the market several feet in length, cylindrical, about the thickness of a quill, very flexible; externally longitudinally wrinkled, of various colors, depending upon the variety, generally ash-colored, grayishbrown, or reddish-brown; internally whitish, horny, or occasionally mealy; nearly inodorous; taste mucilaginous, bitter, and acrid.

STRUCTURE.—A transverse section shows a thin, easily removed epidermis overlaying a thick cortical layer; this inner bark consists of loose parenchyma, the cells of which, when not devoid of solid contents,
are filled with starch-granules or paste, and occasionally calcium oxalate raphides; a brownish ring (nucleus sheath) separates it from the woody center, which is made up of elongated woody cells. A small pith runs through the center of this woody zone.

Fig. 28.—Smilax officinalis—Portion of vine and rhizome.
VARIETIES.—There are four principal varieties of sarsaparilla, differing somewhat in appearance, and especially in the condition of the starch.
(a) Mealy-starch in granules (see Part iv).

The Honduras sarsaparilla is the kind most generally used in this country. It is grayish or grayish-brown from adhering dirt, beset with a few fibers, and comes in compact cylindrical bundles 2 or 3 feet long.

Brazilian sarsaparilla (Rio Negro, Para, or Lisbon sarsaparilla). Considered to be the finest variety. Dark brown or blackish-brown, with a thick cortical layer and pith, and a narrow, woody zone.

(b) Pasty-starch in a paste.

Jamaica or red sarsaparilla is of a reddish color externally; it is said to be the richest in extractive and to contain the best quality of starch. The name bearded sarsaparilla has been applied to it, from the numerous fibers attached.

Mexican sarsaparilla is deeply wrinkled, and brownish-gray from adhering earth. The woody zone and pith are about equal in thickness, each being about half as broad as the cortical layer.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—The activity of sarsaparilla depends upon an acrid glucoside, parillin, C_{26}H_{44}O_{10} + 2\frac{1}{2}H_2O (variously termed smilacin, parillinic acid, pariglin, etc.), frothing with water and otherwise closely resembling saponin in action. Kobert states that two other glucosides are present, saponin (sarsaparilla saponin), 5(C_{20}H_{32}O_{10})-2\frac{1}{2}H_2O, and sarsa-saponin, 12(C_{22}H_{36}O_{10}) + H_2O. These two latter differ from parillin in their being soluble, while parillin is insoluble. The latter constituent is the most poisonous. Ash, not exceeding 10 per cent.

Preparation of Parillin—Exhaust with warm alcohol and concentrate the liquid to a syrup; add 1\frac{1}{2} times its weight of water; macerate for several days, when a yellow precipitate will form; decant and mix with alcohol, and wash on a filter with 20 per cent. alcohol.

ACTION AND USES.—The efficiency of sarsaparilla as a remedial agent has been and is still much questioned, some declaring it almost inert, others ascribing to it valuable alterative and antisyphilitic properties. Preparations from good, well-preserved specimens are perhaps beneficial remedies in scrofulous affections, and as general bloodpurifiers. Dose: 30 to 60 gr. (2 to 4 Gm.).
CONVALLARIA.—(C. FLORES AND C. RADIX, N.F.)

The dried rhizome and roots and dried inflorescence of *Convallaria majalis* Linné.

BOTANICAL CHARACTERISTICS.—A low, perennial, glabrous herb with slender, running root-stocks. Leaves 2, oblong, bright green, and shining. Scape bearing a one-sided raceme of white, bell-shaped flowers. Fruit a few-seeded red berry.

HABITAT.—North America, Europe, and Northern Asia.

DESCRIPTION OF "ROOT."—In pieces from 50 to 75 MM. (2 to 3 in.) long, and about 3 mm. (1/8 in.) thick, the upper end gnarled and wrinkled, and with the remnants of the scape and petioles attached, tapering at the small end; annulate nodes beset with a circle of eight or ten long, branching, gray rootlets; externally white, fracture white, tough, and fibrous. Odor distinct; taste sweetish, somewhat bitter and acrid. C. Flores—see N.F.

CONSTITUENTS.—Two glucosides, *convallarin*, \( C_{34}H_{62}O_{11} \) (the emetocathartic principle), acrid prisms, scarcely soluble in, but foaming when shaken with water; and *convallamarin*, \( C_{23}H_{44}O_{12} \), the cardiac acting principle, a sweetish, afterward bitter, crystalline powder.

Preparation of Convallamarin.—The estimation of the value of the drug is based upon the separation of this constituent. The drug is extracted with alcohol, the tincture treated with subacetate of lead, and filtered; excess of lead removed by careful addition of \( H_2SO_4 \); filter, distil off alcohol, add water, neutralize carefully with \( Na_2CO_3 \), add solution of tannin. The precipitate of tannin compound is dissolved in 60 per cent. of alcohol, decolorized with animal charcoal, decomposed with zinc oxide. The filtrate is then evaporated to dryness.

ACTION AND USES.—Convallaria was introduced as a safer cardiac tonic than digitalis. Its absence of cumulative action was pointed out by therapeutists. “It does not disturb the stomach or cerebro-spinal functions if preparations free from convallarin are used.” It is one of the most active diuretics, especially in cardiac
dropsies. Dose: 5 to 30 gr. (0.3 to 2 Gm.); of convallamarin 1/2 to 2 gr. (0.0324 to 0.13 Gm.).

60. VERATRUM VIRIDE

AMERICAN HELLEBORE

The dried rhizome and roots of *Veratrum viride* Aiton (American).

BOTANICAL CHARACTERISTICS.—Roots fibrous; stem 2 to 7 feet high, stout and very leafy, somewhat pubescent. Leaves broadly oval, clasping. Flowers in dense panicles, yellowish-green. Capsule many-seeded.

HABITAT.—North America and Europe.

DESCRIPTION OF DRUG.—Usually in small pieces or large slices. When entire, obconical, from 50 to 75 mm. (2 to 3 in.) long, truncate at the base, tufted above with the inert stem-remnants and leaf-stalks, and beset on all sides with light yellowish-brown rootlets about the thickness of a knitting needle; externally blackish. A transverse section shows a dingy white surface dotted with darker colored dots and wavy lines within the nucleus sheath. The larger part of the tissue consists of parenchyma containing starch and calcium oxalate; nucleus sheath wavy, wood-bundles numerous. Rootlets have a thick, cortical parenchyma. Inodorous; taste bitter, very acrid, causing a tingling, benumbing sensation in the tongue. The powder is sternutatory. Starch grains of Veratrum, see Fig. 283.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Veratrum viride contains the alkaloids *jervine*, *C*$_{26}$*H*$_{37}$*NO$_{3}$ (to which the depressant action on the circulation is partly due) and *protoveratrine*, *C*$_{32}$*H*$_{51}$*NO$_{11}$. This, the most important of the Veratrum alkaloids, occurs in colorless shining crystals, belonging to the monoclinic system, which are permanent in air and melt at 245º to 250º. Insoluble in water, benzene and petroleum benzin, and dissolves with difficulty in most other solvents. Chloroform and boiling 96 per cent. alcohol are its best solvents. Its alcoholic solution rapidly changes red litmus to blue. It forms a greenish colored solution with concentrated *H*$_{2}$*SO*$_{4}$ which gradually changes to blue and finally to violet.

If dissolved in diluted alcohol, it will usually be obtained in the form of a
colored syrupy residue upon evaporation of the solvent, only a small portion crystallizing.

**Jervine** is a depressant to the respiratory center, to the vasomotor center and to the heart muscles.

**Rubijervine** stimulates the cardio-inhibitory centers, but appears to depress the respiratory center.

There is no physiological relationship between protoveratrine and veratrine. The latter is the active principle of *Asagraea officinalis* (61).

**ACTION AND USES.**—The action of veratum viride closely resembles that of aconite, being a powerful cardiac depressant and spinal paralyzing, but in addition it has a strong emetocathartic action, and consequently overdoses are less likely to prove fatal; death occurs by
paralysis of the heart. Dose: 1 to 5 gr. (0.065 to 0.3 Gm.).

OFFICIAL PREPARATIONS.

**Tinctura Veratri Viridis**
(10 per cent.), Dose: 1 to 5 drops (0.065 to 0.3 mil).

**Fluidextractum Veratri Viridis**
Dose: 1 to 5 drops (0.065 to 0.3 mil).

61. **SABADILLA.**—CEVADILLA. The seeds of *Veratum sabadilla* Schlechtendal, and of *Asagraee officinalis* Lindley. Habitat: Mexico. They occur in commerce mixed with the fruit, which consists of three thin, papery, acuminate follicles, nearly erect, united at the base, opening by a ventral suture, and appearing like a single three-celled capsule. Each follicle contains one or two narrow, oblong or lance-linear seeds, about 6 mm. (¼ in.) long, dark brown or blackish, longitudinally shriveled, slightly winged, flat on one side, convex on the other, somewhat curved; apex pointed; the thin testa incloses a discolored, oily albumen, in the broader end of which is the small, linear embryo; inodorous; taste bitter, oily, strongly and persistently acrid.

CONSTITUENTS.—Sabadilla is the principal source of *veratrine*, C$_{37}$H$_{53}$NO$_{11}$ (Veratrina), a white powder, intensely acrid and sternutatory. The commercial veratrine is impure; it is a mixture of the alkaloid veratrine with other alkaloids extracted along with it, cevadine, C$_{32}$H$_{49}$NO$_{9}$, cevadilline, C$_{34}$H$_{53}$NO$_{8}$, sebadine, C$_{29}$H$_{51}$NO$_{8}$, and sabadinine.

Preparation of Veratrine.—Remove resin and oil from alcoholic tincture by adding water q.s. Decompose native salt (veratrate of veratrine) in
filtrate by means of KOH. Take up alkaloid with alcohol. Purify by converting into sulphate, decolorizing, and reprecipitating.

ACTION AND USES.—Sabadilla is rarely used except for the extraction of veratrine. It is a powerful irritant and is sometimes used to kill vermin in the hair.

62. **POLYGONATUM.**—SOLOMON’S SEAL. The rhizome of Polygonatum *biflorum* Elliott, and of *P. giganteum* Dietrich. Habitat: North America. A pale brownish-yellow or whitish root, annulate and jointed, each joint being surmounted by an obscurely seal-like stem-sear, which gives to the plant its name; internally whitish, spongy; inodorous; taste sweetish, mucilaginous, with an acrid, bitterish after-taste. Tonic, mucilaginous and mildly astringent; formerly much used in skin diseases and as a vulnerary, and has been recommended in gout and rheumatism. Dose: 1 to 2 dr. (4 to 8 Gm.), in fl'ext.

63. **CHAMÆLIRIUM LUTEUM** Gray. Helonias, N.F.—HELONIAS DIOICA Pursh. FALSE UNICORN. Habitat: United States. The rhizome, which is the part employed, is greenish-brown externally, closely annulate, about 25 mm. (1 in.) long, and 6 mm. (1/4 in.) thick, beset on the lower side with numerous wiry rootlets; internally whitish, horny; bitter. Transverse surface is dirty white in hue and of a horny texture, and exhibits a well-defined central column occupying about one-third the diameter. It has been used as an adulterant for sanguinaria. Tonic, diuretic, anthelmintic. Dose: 15 to 60 gr. (1 to 4 Gm.).

64. **TRILLIUM.** N.F.—BIRTHROOT. WAKE-ROBIN. The rhizome of Trillium *erectum* Linné, and other species of Trillium growing in the United States. Emmenagogue and emetic. Dose: 15 to 60 gr. (1 to 4 Gm.).

65. **ASPARAGUS.**—The rhizome of Asparagus *officinalis* Linné. Cardiac sedative or palliative, diuretic, laxative. Dose: 30 to 60 gr. (2 to 4 Gm.).
66. **ALLIUM, N.F.—GARLIC**. The bulb of *Allium sativum* Linné. Official in U.S.P. 1890. A compound, subglobular bulb, flattened at the base, pointed at the apex, where several inches of the stem remains; it consists of five or six (in commercial garlic about eight) small, oblong, somewhat curved bulbs or "cloves" arranged around the central axis, each with a distinct coat, and internally whitish, moist, and fleshy; the whole bulb is inclosed by a dry, white, membranous coat, consisting of several delicate laminae; odor pungent and disagreeable (alliaceous); taste warm, acrid. Used in the fresh state. Commercial garlic is a hybrid between *A. sativum* and *A. porrum* Linné. Constituents: Mucilage 35 per cent., albumen, fibrous matter, and moisture. The peculiar odor and taste are due to volatile oil, composed of the sulphide and oxide of allyl. Stimulant and expectorant, also diaphoretic and diuretic. Dose: 30 to 60 gr. (2 to 4 Gm.).

**Syrupus Allii** (20 per cent., with the addition of dilute acetic acid) (U.S.P. 1890)
Dose: 1 to 2 fl. dr. (4 to 8 mils).

67. **SCILLA.—SQUILL**

**SQUILLS**

The inner freshly scaled bulb of the white variety *Urginea maritima* (Linné) Baker, cut into slices and dried.

**BOTANICAL CHARACTERISTICS.**—Bulb semisuperficial. Leaves lanceolate, all radical, appearing after the flowers. Scape 2 to 4 feet high, terminated by a dense raceme of yellowish-green flowers, each one of which is accompanied by a long bract; ovary with 3 nectariferous glands at the apex.

**HABITS OF PLANT.**—Grows in sandy places near the coast. The plant flowers in autumn, the leaves appear in the following spring. Bulb only half immersed in the soil.

**HABITAT.**—Mediterranean shores, in dry, sandy places near the coast.

**DESCRIPTION OF DRUG.**—Squill comes into the market in narrow horny segments about 50 mm. (2 in.) long, often more or less contorted; color varying from white or yellowish-white to a reddish tint, slightly translucent; when dry, it is brittle and pulverizable, but by exposure to a moist atmosphere it becomes flexible. Occasionally vertical slices, sometimes adhering at the base, are met with. Odor slight; taste mucilaginous, bitter, nauseous, and acrid.
The fresh bulb is inversely pear-shaped, fleshy, varying in size from that of a man's fist to a child's head. There are two kinds, differing only in color, one being entirely white, and the other reddish-brown externally, internally rose color, with white parenchyma. In preparing for market the outer scales are removed and the bulb is then sliced transversely, the central scales being also rejected as being too fleshy and mucilaginous; they lose about four-fifths of their weight in drying.

TEST.—If made into the official tincture and assayed biologically, the
minimum lethal dose should not be greater than 0.006 mil of tincture or the equivalent in tincture of 0.0000005 Gm. of ouabain, for each gram of body weight of frog.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Merck's analysis shows three active principles, scillipicrin (a bitter principle acting upon the heart), scillitoxin, glucoside (bitter, burning, also acting upon the heart), scillin, crystalline (producing numbness, vomiting, etc.), with mucilage, sugar, sinistrin, C₆H₁₀O₅, like dextrin, and calcium oxalate crystals. Later investigations point to the probability of the above principles being alkaloids, and they are named scillapicine, scillamarine, and scillamine respectively. Jamersted's scillain is a poisonous glucoside of a yellow color. Ash, not exceeding 8 per cent.

ACTION AND USES.—Expectorant, diuretic, in large doses emetic and cathartic. As an expectorant it is usually combined with tartar emetic or ipecac; as a diuretic, with stimulant expectorants. It is very rarely given as an emetic because of its uncertainty, having often proved fatal from its irritant action on the stomach and intestines, and by causing hypercatharsis, death occurring by arrest of the heart in systole. Dose: 1 to 3 gr. (0.065 to 0.2 Gm.).

Official Preparations.

Acetum Scillae (10 per cent.), ........ Dose: 10 to 30 ml (0.6 to 2 mils).
Syrupus Scillae (45 per cent. of the acetum), ................. 30 to 60 ml (2 to 4 mils).
Fluidextractum Scillae, ................. 1 to 4 ml (0.065 to 0.25 mil).
Syrupus Scille Compositus (fl'ext. 8 per cent., with fl'ext. senega 8 per cent., and tartar emetic 2 per cent. or ½ gr. to the teaspoonful), .... 15 to 60 ml (1 to 4 mils); 1 to 2 fl. dr. (4 to 8 mils).

COLCHICUM.—MEADOW SAFFRON

The corm and the seed of Colchicum Autumnale Linné.

BOTANICAL CHARACTERISTICS.—Col'chicum autumnal'e Linné. Corm fibrous-rooted. Leaves about a foot long. Flowers several, lilac or purple, appearing in the autumn without the leaves.

HABITAT.—Europe and North Africa.

HABIT OF PLANT.—Flowers in autumn; the leaves appear in the spring.
In the latter part of spring a new corm begins to form at the expense of the old one. In September the upper portion of the flower emerges from the spathe just above ground unaccompanied with leaves. The rudimentary fruit at the base of the flower, below ground, in the following spring rises upon a stem above the surface, in the form of a 3-celled capsule. At the same time the leaves appear; so that, in fact, the leaves follow the flower, instead of preceding it. During the development of the fruit the new corm has been developing at the expense of the old parent one. It will be seen that the medicinal virtues depend upon the time of collection. Early in the spring it is too young, and late in the fall the parent corm has become exhausted by the nutriment furnished to the new plant. The proper period for collection, therefore, is said to be from June to the month of August, although April roots have been found to be of superior efficacy.

68. COLCHICI CORMUS

COLCHICUM CORM

The dried corm of *Colchicum Autumnale* Linné, yielding by the official process not less than 0.35 per cent. of colchicine.

DESCRIPTION OF DRUG.—An ovoid corm about 25 to 40 mm. (1 to 1 3/5 in.), long flattened and deeply grooved on one side; when dried and deprived of its outer membranous covering it is wrinkled and of a brownish-gray color; internally whitish. It often comes into market in transverse starchy slices having a reniform outline, due to the lateral groove; inodorous; taste sweetish, bitter, and somewhat acrid. A very deep or large notch in the slices indicates that the corm has been partially exhausted by the offset which springs from the base.

Powder.—Microscopical elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Colchicine, a methyl derivative of colchiceïn as will be seen from the following: Colchiceïn, C_{15}H_{9}(NHCOCH_{3})(OCH_{3})_{3}COOH; colchicine, C_{15}H_{9}(NHCOCH_{3})(OCH_{3})_{3}COOCH_{3}. With mineral acids colchicine yields colchiceïne and methyl alcohol. Starch, gum, resin, fat, and sugar are also present.

Preparation of Colchicine.—Exhaust with alcohol, dilute with water, filter; add lead subacetate to precipitate coloring matter; add sodium phosphate to remove lead; precipitate solution with tannin, wash the precipitate and digest with lead oxide, dry, and dissolve out colchicine with alcohol. Occurs in whitish amorphous powder or crystals; odor saffron-like, taste bitter.
Fig. 38.—Colchicum autumnale.

Fig. 37.—Cross-section of Colchicum root—outer portion. a. Vascular bundle. b, Parenchyma.
ACTION AND USES.—Colchicum is a gastro-intestinal irritant; the larger therapeutic doses sometimes cause nausea, vomiting and diarrhea. In poisoning there is intense gastro-intestinal irritation, bloody stools, irritation in the kidneys, sometimes an ascending paralysis. It is chiefly employed in gout and rheumatism, in which it is said to be very efficacious. Dose: 2 to 8 gr. (0.13 to 0.5 Gm.).

OFFICIAL PREPARATION.

**Extractum Colchici Cormi**, Dose: 4 gr. (0.25 Gm.).

69. COLCHICI SEMEN

**COLCHICUM SEED**

The seed of *Colchicum autumnale* Linné, yielding by the official process not less than 0.55 per cent. of colchicine.

DESCRIPTION OF DRUG.—These seeds have the same constituents and the same medicinal action as the roots, and are given in about the same doses. They are hard, reddish-brown, subglobular, 3 mm, (1/8 in.) in diameter, somewhat pointed at the hilum and with a slight projection or caruncle on one side. Testa thin, somewhat scurfy, closely adhering to the white albumen, which fills the entire seed and which is characterized by its **extreme hardness**; embryo small, nearly opposite the hilum; inodorous; taste oily, bitter, and somewhat acrid. Dose: 3 gr. (0.2 Gm.). Ash not exceeding 8 per cent.

Powder.—Characteristics: See Part iv, Chap. I, B.

OFFICIAL PREPARATIONS.

**Tinctura Colchici Seminis** (10 per cent.), Dose: 10 to 60 drops (0.6 to 4 mils).

**Fluidextractum Colchici Seminis** Dose: 1 to 5 drops (0.065 to 0.3 mil).

70. ALOE.—ALOES

**Ger. ALOE**

The inspissated juice of the leaves of *Aloe Perryi* Baker, yielding Socotrine Aloes; or *Aloe vera* Linné, yielding Curaçao Aloes; or of *Aloe ferox* Miller, yielding Cape Aloes, U.S.P.

BOTANICAL CHARACTERISTICS.—Succulent plants with spicate inflorescence; perianth tubular; style equal in length to the stamens, or almost wanting. Capsule membranous, scarious; seeds in two rows, flattened or 3-cornered, winged. Cape of
Good Hope, etc. The American aloe, or century plant (*Agave americana*), is a plant quite similar to the above.

**COLLECTION.**—The bitter, yellow, succulent portion of the leaf (which, when inspissated, constitutes the aloes of commerce) is found in thinwalled ducts near the surface. The thick leaves are cut off near the base (March and April) and stood up in the sun to drain upon skins. Impurities are removed by skimming with a ladle, etc. Artificial heat is sometimes used for evaporation. When of proper consistence, the evaporate is transferred to kegs, monkey skins, or boxes, and shipped by way of Bombay and Zanzibar.

Socotrine (Zanzibar) is a highly esteemed article, comes in yellowish-brown masses, sometimes soft, odor aromatic, saffron-like, never fetid or putrid and a nauseous and bitter taste, easily broken into pieces with conchoidal fracture and sharp edges, readily splinters. Does not possess any crystalline characteristics under the microscope.

Curaçoa, from the Dutch West Indies, is preferred by some to Socotrine. This variety comes in orange to blackish-brown, opaque masses, fracture surface, uneven, waxy, somewhat resinous; odor, characteristic but not aromatic as in the socotrine variety.

Cape Aloes, the South African Aloes, comes in reddish-brown or olive-black masses, usually covered with a yellowish dust, in thin fragments, transparent and of a reddish-brown color; fracture, smooth and glassy; odor, quite characteristic.
CONSTITUENTS.—The active principle of these different aloes is a bitter neutral principle having the general name of **aloin**, but slightly differing in each variety, forming possibly a homologous series; these aloes may be distinguished by their characteristic reactions with different reagents. It should be stated that the various processes of assay for aloes thus far proposed give discordant results. A small percentage of emodin is found in various varieties. Cape aloes contains 0.8 per cent. of this principle. Ash, not exceeding 4 per cent.

70a. **ALOE BARBADENSIS.**—**BARBADORES ALOES.** Prepared from the leaves of *Aloe chinensis*, Steud and A. Vera, L. by boiling the juice or by making a decoction of the leaves; it is inferior to the other varieties. Its color varies, but it is usually **dark brown, approaching to black**, opaque even at the edges, and with a dull fracture; it is further distinguished by its **nauseous** odor. A solution of 1 part in 100,000 of distilled water produces a fine rose color on the addition of gold chloride or tincture of iodine, all the others, except Natal aloes, producing only a slow change, a feeble color, or no color whatever.

**TESTS.**—**SOCOTRINE.** The powder (dark brown) when mounted under the microscope in almond oil, shows yellowish- to reddish-brown, irregular or angular fragments; upon addition of nitric acid yields a yellowish to reddish-brown solution.

**CURAÇOA.**—Powder (deep reddish brown) when treated as above shows numerous blackish brown more or less opaque and angular fragments; with nitric acid, yields a deep red liquid immediately.

**CAPE.**—Powder (greenish-yellow changing to light brown on aging). When treated as above and mounted under microscope it shows numerous distinctly angular bright yellow fragments. Nitric acid produces a reddish-brown liquid changing to purplish brown and finally greenish.

**GENERAL TEST.**—Intimately mix 1 Gm. of Aloes with 10 mils of hot water and dilute 1 mil of this mixture with 100 mils of water; a green fluorescence is produced upon the addition of an aqueous solution of sodium borate (1 in 20). Dilute 1 mil of the original aqueous mixture of Aloes with 100 mils of water, and shake it with 10 mils of benzene; upon separating the benzene solution and adding to it 5 mils of ammonia water a permanent deep rose color is produced in the lower layer, U.S.P. IX.

In the case of liquids it is best to evaporate about 10 mils, more or less,
to a pasty consistency in a porcelain dish, acidulate, and extract from the dish with about 10 mils of ether by stirring with a glass rod and pouring off the ether into a test-tube. With pills or other solid material it is necessary only to powder, acidulate and extract as described. To this extract an equal volume of saturated borax solution is added, etc., U.S.D.A.

Preparation of Aloin.—From some varieties of aloes it is obtained by digesting in alcohol for twenty-four hours; then boil, filter, and set aside to crystallize. Can also be obtained by dissolving aloes (Barbadoes or Curaçao) in acidulated boiling (HCl) water, and, when cold, resin will deposit; decant, evaporate, and set aside for two weeks, when aloin will crystallize. Shaking the crystals with acetic ether removes adhering resin. Dose: 2 to 5 gr. (0.12 to 0.32 Gm.). (See also 70 e.)

**ACTION AND USES.**—**Cathartic and emmenagogue.** As a cathartic aloes is slow in action but certain, having a peculiar affinity for the large intestine; it has produced beneficial effects as a chologogue; as an emmenagogue it is extensively employed in amenorrhea. Dose: 2 to 5 gr. (0.13 to 0.3 Gm.).

**Official Preparations.**

<table>
<thead>
<tr>
<th>Product</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractum Aloes,</td>
<td>3 to 10 gr. (0.2 to 0.6 Gm.)</td>
</tr>
<tr>
<td>Tinctura Aloes (10 per cent. with glycyrrhiza 20 per cent.)</td>
<td>5 to 10 ml (0.3 to 0.6 mil); ½ to 4 fl. dr. (2 to 8 mils).</td>
</tr>
<tr>
<td>Tinctura Benzoini Composita (2 per cent. of aloes)</td>
<td>10 to 40 ml (0.6 to 2.6 mils).</td>
</tr>
<tr>
<td>Extractum Colocynthidis Compositum (50 per cent.)</td>
<td>5 to 25 gr. (0.3 to 1.6 Gm.).</td>
</tr>
<tr>
<td>Pilulæ Aloes (about 2 gr. in each pill)</td>
<td>2 to 5 pills.</td>
</tr>
<tr>
<td>Pilulæ Rhei Compositæ (aloes ½ gr. in each pill)</td>
<td>1 to 3 pills.</td>
</tr>
</tbody>
</table>

70e. **ALOINUM.**—ALOIN (U.S.P. IX). A neutral principle from several varieties of aloes, chiefly Barbadoes aloes (yielding barbaloin), C₁₇H₂₀O₇, and Socotra or Zanzibar aloes (yielding socaloin), C₁₅H₁₆O₇, U.S.P. Nataloin, C₁₆H₁₈O₇, while not official, is a similar product. Minute acicular crystals, or a microcrystalline powder, yellow to yellowish-brown, of a slight odor and characteristic bitter taste. Barbaloin, soluble in 470 parts of ether; socaloin, soluble in 380 parts of ether. Both soluble in water and alcohol. It is rapidly decomposed in alkaline solution. Dose: 1 gr. (0.6 Gm.). Ash, not more than 0.5 per cent.

71. **XANTHORRHOEA.**—GUM ACAROIDES. BOTANY BAY RESIN. GRASS-TREE RESIN. A spontaneous resinous exudation from the stems of different shrubby Australian plants of the genus Xanthorrhoea. The yellow variety, from X. hastitis R. Brown, resembles gamboge in appearance; externally reddish yellow, internally a lighter yellow; odor agreeably balsamic, especially when heated, when it
emits a tolu-like odor; taste balsamic, somewhat acrid. The red variety, from X. australis R.Brown, resembles dragon's blood in appearance, being externally deep brown-red; internally bright red; fracture glossy.

CONSTITUENTS.—Resin, benzoic and cinnamic acids, and a trace of volatile oil.

ACTION AND USES.—Resembles storax and tolu in medical properties. Dose: 8 to 30 gr. (0.5 to 2 Gm.). Chiefly used as a substitute for shellac, and for making colored varnishes.

72. **ERYTHRONIUM AMERICANUM** Smith.—ADDER'S TONGUE. DOG-TOOTH VIOLET. Habitat: United States. (Leaves.) Alterative. Sometimes applied as a poultice to scrofulous tumors.

**HÆMODORACEÆ (Liliaceæ N.F.).—Bloodwort Family**

73. **ALETRIS** N.F.—COLIC ROOT. STARWORT. The rhizome of *Alet'risfarino'sa* Linné. Habitat: United States. Small, crooked, about the size of a quill, flattened and tufted above and beset with wiry, white rootlets below. Alcohol extracts its bitter principle. Bitter tonic, diuretic, and vermifuge; used extensively in the treatment of uterine diseases. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

**DIOSCORIACEÆ.—Yam Family**

74. **DIOSCOREA**, N.F.—WILD YAM. COLIC ROOT. The rhizome of *Diosco'rea villo'sa* Linné. Habitat: United States. Expectorant, diaphoretic, antispasmodic, and a stimulant to the intestinal canal. It is a valuable remedy in bilious colic. Dose: 15 to 60 gr. (1 to 4 Gm.), it; fluidextract.

**IRIDEÆ.—Iris Family**

Perennial herbs, with equitant, 2-ranked leaves, the flowering stem arising from a rhizome or corm.

75. **IRIS**, N.F.—IRIS VERSICOLOR. N.F. BLUE FLAG. (1890.) A horizontal, jointed rhizome, generally cut into longitudinal slices; externally brown, closely annulate from the leaf-sheath remnants, and near the broad flattened end crowded with long, simple rootlets. Constituents: Acrid resin 25 per cent., fixed oil, starch, gum, tannin, sugar, iridin, and indications of a brownish, viscid, amorphous alkaloid. Preparation of Iridin: Obtained by precipitating hot alkaline solution by an acid. The eclectic method of preparation is to precipitate concentrated alcoholic tincture with water; mix dried precipitate with equal quantity of licorice root. Cholagogue, cathartic and alterative. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

**Fluidextractum Iridis** (U. S. P. 1890), Dose: 10 to 30 drops (0.6 to 2 mils).

**Extractum Iridis** (U.S.P. 1890) Dose: 1 to 3 gr. (0.065 to 0.2 Gm.).
76. IRIS FLORENTINA.—ORRIS ROOT. The rhizome of *Iris florentina*, *Iris pallida*, and *Iris germanica* Linné. Habitat: Northern Italy. In clubshaped pieces or joints, from 75 to 125 mm. (3 to 5 in.) in length, a broad depression or scar terminating the broad end. Externally white, peeled; fracture short, mealy, faintly yellowish white; odor violet-like; taste mealy, bitterish, and somewhat acrid. It contains iridin, irone, C₁₃H₂₀O, a ketone of violet odor, acrid resin, starch, mucilage, bitter extractive, and orris camphor, consisting of a fat impregnated with volatile oil. Cathartic, diuretic. Dose: 5 to 15 gr. (0.3 to 1 Gm.). Chiefly used in tooth-powders and perfumes. (Highly magnified starch grains of Iris, see Fig. 286.)

![Diagram of Iris Florentina](image-url)

Fig. 38.—*Crocus sativus*—Plant, flower, and stigma.
77. **CROCUS, N.F.**—SAFFRON. The stigmas of *Crocus sativus* Linné. Asia Minor and Greece; cultivated for market in Spain, France, and other temperate countries of Europe; also cultivated in the southeastern counties of Pennsylvania. Commercial saffron is mostly of French or Spanish origin; a product of the Cape of Good Hope known as Cape saffron, resembling the genuine in odor, is a flower of a small plant belonging to the Scrophulariaceae ("Pharm. Journal," VI, 462, 1865). "American saffron" consists usually of safflower. The commercial or "hay saffron" consists of orange-brown stigmas, separate, or united (three) to the top of the style, about 30 mm. (1 1/5 in.) long, almost filiform, enlarging toward the top, which is toothed; their edges are rolled in, giving them a flattish-tubular appearance; crisp and somewhat elastic; orange-brown; odor peculiar, aromatic; taste pungent, bitterish. In selecting saffron the above characteristics should be borne in mind; the drug should not emit an offensive smell when thrown upon live coals. If it has a musty flavor or a black, yellowish, or whitish color, it should be rejected. If the cake saffron be purchased, those should be selected which are close, tough, and firm in tearing. Owing to its high price, saffron offers a great field for adulteration, which is done in various ways. The commonest is to mix the stigmas with the styles, which may be distinguished by their lighter color. Old saffron and that deprived of its coloring matter leaves an oily stain when pressed between paper, due to the fixed oil with which they are covered to conceal their false nature. The florets of other flowers, as calendula, carthamus, and arnica, may be detected by dropping them into water, when their characteristic forms will come out. Mineral adulterants, which are sometimes found to the extent of 20 per cent., will subside to the bottom when the suspected drug is placed on water; carbonate of lime will effervesce when a drop of acid is placed on the suspected drug. Constituents: An orange-red coloring matter, which gives to saffron its chief value; a glucoside, usually called crocin, \(C_{44}H_{70}O_{28}\), but formerly called polychroit, because of the many different colors it gives with acids; crocetin, \(C_{34}H_{46}O_{9}\), and a volatile oil, \(C_{10}H_{16}\), upon which its medicinal virtues depend. Saffron has fallen into almost complete disuse among practitioners of the United States and Great Britain, but it is occasionally used in domestic practice in the form of a tea, to promote eruption in measles, scarlet fever, and other exanthematous diseases. Dose: 5 to 30 gr. (0-3 to 2 Gm.). Chiefly used for coloring preparations.

**Tinctura Croci** (10 per cent.). (U.S.P. 1890). Dose: 1 to 2 dr. (4 to 8 mils).

**SCITAMINEÆ.-Banana Family**

A tropical order, many species of which have a pungent principle in their rhizome or root; other species yield an abundance of starch and coloring matter.

**Synopsis of Drugs from the Scitamineæ**

<table>
<thead>
<tr>
<th>A. Rhizomes</th>
<th>B. Fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>ZINGIBER</em>, 78.</td>
<td><strong>CARDAMOMUM</strong>, 82.</td>
</tr>
<tr>
<td><em>Galanga</em>, 79</td>
<td></td>
</tr>
<tr>
<td><em>Zedoaria</em>, 80.</td>
<td>C. Seeds</td>
</tr>
<tr>
<td><em>Curcuma</em>, 81.</td>
<td>Granum Paradisi, 83.</td>
</tr>
</tbody>
</table>

Sayre's Materia Medica - Page 73
78. ZINGIBER.—GINGER

GINGER

The dried rhizome of *Zingiber officinale* Roscoe (Fam. Zingiberaceae, U.S.P. 1900), deprived of periderm.

BOTANICAL CHARACTERISTICS.—Root-stock biennial, creeping; stem 3 to 4 feet high; leaves linear-lanceolate, smooth. Spikes radical, each flower bracteate; lip 3-lobed; stamens 3, 2 abortive; capsule 3-celled, 3-valved.

HABITAT.—Africa, Hindustan; cultivated in the West Indies and tropics.

DESCRIPTION OF DRUG.—A flattened rhizome, from 25 to 100 Mm. (1 to 4 in.) long, with large club-shaped lobes on one side; deprived of the corky layer by scraping, and bleached, leaving a pale buff-colored, striate surface, sometimes covered with a white powder of calcium carbonate from being steeped in milk of lime; fracture mealy and rather fibrous, showing a whitish interior dotted with numerous small, orange-colored oil and resin-cells. Transverse sections show a parenchymatous meditullium containing scattered resincells and numerous fibrovascular bundles, which latter are less abundant outside of the nuclear sheath. The central cylinder is quite broad as compared with the cortical layer; aromatic and spicy; pungent.

VARIETIES.—The above-described root, Jamaica ginger or white ginger, (deprived of corky layer), is the finest variety, yielding 5 per cent. oleoresin. African ginger is shorter, with broadly linear or oblong lobes, and is not deprived of its light brown, corky layer. Chinese ginger is also a coated rhizome, but has short stumpy lobes. East India ginger is scraped on the flat side, leaving the cork remaining on the edges. It yields 8 per cent. of oleoresin. Green ginger consists of the rhizome sent to market without drying; black ginger, of the rhizome steeped in boiling water before drying, after which it has a black, horny structure. The preserved ginger is an article on the market which consists of soft, yellowish-brown pieces, obtained by steeping the fresh ginger in hot syrup and carefully bottling.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Volatile oil, 1 to 2 per cent. (consisting of camphene and phellandrene), and gingerol, the former probably giving
to it its aromatic properties, and a resinous, viscid, inodorous extractive its hot, pungent taste; also resin, starch (20 per cent.), and mucilage. Jamaica ginger yields about 5 per cent. of oleoresin, the East India ginger about 8 per cent. Ash, not exceeding 8 per cent.

ACTION AND USES.—**Stimulant**, carminatives and stomachic, often used as an adjuvant to bitter, tonic preparations. When chewed it stimulates the secretion of the saliva and if snuffed into the nostrils in powder it occasions sneezing. It relieves abdominal cramp due to flatus and is useful to diarrhea mixtures, bitter tonics, and to preparations.
given to correct indigestion. As a rubifacient it is made into a cataplasm either alone or in combination with other species for the relief of colic, headache, myalgia, neuralgia, etc. Dose: 8 to 30 gr. (0.5 to 2 Gm.).
79. GALANGA.—GALANGAL. N.F. The rhizome of Alpinia officinarum Hance. Habitat: China. Reddish-brown, cylindrical, branched, about 100 mm. (4 in.) long, and about the thickness of the thumb, marked with circular or diagonally annular, whitish rings, the remains of former leaf-sheaths; internally orange-brown, dotted with numerous brownish-yellow resin-cells; odor and taste ginger-like. Small galangal, or galanga minor, does not exceed the little finger in size, is darker in color, and has a stronger taste and odor. Like ginger, their activity is due to a volatile oil and a resin, and they have the same medicinal action. (Highly magnified starch grains, see Part iv.)

80. ZEDOARIA, N.F.—ZEDOARY. The rhizome of Curcuma zedoaria Roxburgh. There are two kinds, the long and the round, both coming from the East Indies. Externally grayish-white, internally brown, hard, compact; odor aromatic; taste spicy, camphoraceous. The drug comes into market in slices and disks. It is used as an aromatic stimulant, and possesses properties similar to but inferior to those of ginger. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

81. CURCUMA.—TURMERIC. The rhizome of Curcuma longa (Linné). Habitat: Southern Asia and East Indies, the best coming from China. Cylindrical pieces (Curcuma longa), about as thick, but not so long, as the finger, tuberculated and somewhat contorted; externally yellowish-gray, internally deep orange-yellow, with a darkish ring marking the circular nucleus sheath; hard, compact, breaking with a glossy, waxy fracture; odor feeble but peculiar; taste aromatic, pungent, bitter.

Curcuma rotunda is round or oval, about the size of a pigeon’s egg, or larger, marked externally with annular rings. Both forms of root are derived from the same plant, one being a modification of the other.

CONSTITUENTS.—Volatile oil, a viscid oil, a pungent resin, pasty starch, and a peculiar yellow coloring matter called curcumin, turned brownish by alkalies,
becoming violet on drying; with boracic acid it produces an orange tint, changed to blue by alkaline solutions. Stimulant and tonic, but rarely used in that way, except in India, where it is used as a condiment, like ginger. It is used in pharmacy for **coloring ointments and tinctures**, and for preparing turmeric test-paper.

Preparation of Curcumin.—Obtained pure after removing the oil by exhausting the residual powder with ether, evaporating and recrystallizing from alcohol. Crystals yellow, with a vanilla-like odor.

**82. CARDAMOMI SEMEN.**—**CARDAMOM SEED**

**CARDAMOM**

The dried seed recently removed from capsules of *Eletta'ria Cardamomum* (White et Maton). (Pam. Zingiberaceæ.)

**BOTANICAL CHARACTERISTICS.**—Rhizome fleshy-fibrous. Stem 6 to 9 feet high. Leaves lanceolate, pubescent above, silky beneath. Flowers borne on scapes; anthers 2-lobed. Capsules 3-celled, 3-valved.

**HABITAT.**—Malabar; cultivated in India.

**DESCRIPTION OF FRUIT.**—**Triangular-ovate**, from 12 to 37 mm- (1/2 to 1 1/2 in.) long, with flat, ribbed sides, in the center of which are longitudinal furrows marking the positions of the cell-partitions; valves three, opening longitudinally at the rounded angles; central placenta.
The pericarp is of a yellowish or buff color, leathery, and nearly tasteless. Internally 3-celled, each containing from 5 to 7 reddish-brown, irregularly angular, rugose seeds, having an aromatic odor and taste; these seeds form 75 per cent. of the fruit in the best varieties. The inert pericarp is rejected in making preparations. The seeds are mostly agglutinated in groups of from 5 to 7, the individual seeds are oblong ovoid in shape 3- or irregularly 4-sided convex on the dorsal surface, longitudinally grooved on one side, about 3 to 4 mm. in length, externally reddish-gray to brown, coarsely tubercled, and of ten with adhering portions of the membraneous aril moderately hard but easily crushed, odor aromatic, taste aromatic and pungent. Seeds may be kept in the capsules until wanted for use.

Powder.—Greenish-brown, consisting chiefly of coarse angular fragments of cells of the reserve layers and seed coat.

Endosperm and perisperm of seeds filled with compound starch grains fragments of seed coat with dark brown stone cells, which are polygonal in surface view and about 0.020 in diameter.

Fragments of spiral tracheae with accompanying bast fibers which are very slightly if at all lignified, relatively few or absent.

VARIETIES.—Malabar, the choicest, plump, light, and buff color; Aleppo, mostly short and greenish. These two kinds are mostly imported into the United States. Besides these, there are Madras cardamom, oblong, alternated above, pale in color; Ceylon, from Elettaria major, 1 1/5 in. (40 mm.) long, triangular, prolonged into a beak, dark gray and brown. This latter variety is of inferior flavor. Round cardamom, from Amomum cardamomum of Siam and Java, and A. globosum and A. aromaticum (Bengal cardamom) are known; also winged Java cardamom, from A. maximum. This latter variety has from 9 to 12 wings from the base of the apex, but the Bengal has 9 wings near the apex.

Powder.—Pale brownish-gray (of seed). Characteristic elements: (Powder of whole
fruit.) Parenchyma of pericarp, thin-walled with prismatic calcium oxalate crystals; the pericarp valueless as an aromatic; parenchyma of endosperm with oil, proteid granules and starch, spherical or angular, simple or compound (1 to 4 µ in diam.); seed coat with dark brown stone cells (15 to 20 µ in diam.), inner wall thickened; pericarp has bast fibers very slightly lignified; outer epidermal cells elongated (20 to 30 µ in diam.), tangential walls thickened; oil cells with suberized walls; Ceylon differs from Malabar in containing trichomes and in the measurements of the elements.

CONSTITUENTS.—The pericarp is almost inert, consisting chiefly of lignin. The seeds abound in a fixed oil (10 per cent.) and a volatile oil (4.6 per cent.), consisting of terpene, diterpene, and terpineol, with rhombohedric masses of albuminous matter, gum. Ash, not exceeding 8 per cent.

Powder (of seed).—Characteristics: See Part iv, Chap. 1, B.

ACTION AND USES.—Aromatic, stimulant, stomachic, and carminative, used principally in this country as an adjuvant. Dose: 5 to 15 gr. (0.3 to 1 Gm.).

OFFICIAL PREPARATIONS.
Tinctura Cardamomi (20 per cent.), Dose: 1 to 2 fl. dr. (4 to 8 mils).
Tinctura Cardamomi Composita (2.5 per cent., with cassia cinnamon, caraway, and cochineal) Dose: 1 to 3 fl. dr. (4 to 12 mils).

83. GRANUM PARADISI.—GRAINS OF PARADISE. GUINEA GRAINS. The seeds of Amomum granatum and Amomum melegueta. Small, roundish, somewhat cuneiform; externally finely warty, reddish-brown; internally white. When rubbed, they emit a feebly aromatic odor; taste hot and peppery. Action somewhat resembles pepper.

ORCHIDACEÆ.-Orchis Family

Perennial herbs, sometimes parasitic, with perfect, irregular, and usually showy flowers, the stigma having a broad, glutinous surface (except in Cypripedium); the (usually single) anther is sessile on the style; it is 2-celled, each cell containing one or more waxy masses of pollen, pollinia (Fig. 115).

**Synopsis of Drugs from the Orchidaceæ**

A. *Rhizomes.
   *Cypripedium, 84.
   *Corallorrhiza, 85.

B. *Tuber.
   Tuber, 86.

C. *Fruit.
   *Vanilla, 87.
84. CYPRIPEDIUM.—CYPRIPEDIUM, N.F.

LADIES' SLIPPER ROOT

The dried rhizome and roots of *Cyripedium hirsutum* Miller, and *Cyripedium pubes'cens* Wildenow and *Cyripedium parviflo'rum* Salisbury.

Sayre's Materia Medica - Page 81
HABITAT.—North America, in swampy regions.

DESCRIPTION OF DRUG.—A horizontal, somewhat curved rhizome, about the thickness of a quill and 100 mm. (4 in.) or less in length, of a dark brown or light orange-brown color; on the upper side it is closely covered with deeply concave stem-scars about the width of the rhizome, and on the lower side with smooth, simple, wavy rootlets, abruptly descending, varying in length from 100 to 500 mm. (4 to 20 in.); cortical parenchyma thick, wood-bundles and nucleus sheath indistinct; fracture of rhizome short, of roots fibrous; odor somewhat valerian-like, diminishing with age; taste sweetish, bitter, somewhat pungent at the last.

Cypripedium parviflorum has the rhizome bent two or three times, almost at right angles, and is of a brighter orange-brown color; the rootlets are shorter and less wavy.

CONSTITUENTS.—Volatile oil (a trace), a volatile acid, resins, tannin, sugar, starch, and fixed oil. The active principle has not yet been isolated, but the virtues of the drug are supposed to reside in the volatile oil and a bitter principle (probably a glucoside). Ash, not more than 12 per cent.

ACTION AND USES.—Diaphoretic, nerve stimulant, and antispasmodic, less powerful than valerian. It is valuable as a substitute for opium in the treatment of children. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

85. CORALLORHIZA ODONTORRHIZA Nuttall. —CRAWLEY. CORAL ROOT. The rhizome of a parasitic, leafless herb growing throughout the United States east of the Mississippi. “A prompt and powerful diaphoretic, with sedative properties. A combination with blue cohosh is a good emmenagogue.” Dose: 15 to 30 gr. (1 to 2 Gm.).

86. SALEP.—SALEP. The tubers of Or'chis mas'cula and Orchis morio Linné. Habitat: Europe. Frequently comes in powder. It is a farinaceous, gummy substance, somewhat analogous to tragacanth in composition. Demulcent and nutritive.

87. VANILLA, N.F.

VANILLA

The full-grown but immature fruit of Vanil'la planifo'lia Andrews, cured in the customary manner. Yielding to dilute alcohol 12 per cent. of extractive. Ash, 6 per cent.

BOTANICAL CHARACTERISTICS.—A fleshy, climbing orchid with long, smooth, dark green stem sending out at the nodes aerial rootlets which fasten it to the tree or other support. Leaves sessile, fleshy, tough, veinless. Flowers pale yellowish, in loose axillary racemes. Fruit a pod.
SOURCE AND VARIETIES.—Of the genus Vanilla there are some twenty-three species recognized, a few only of which are used and cured as the commercial vanilla, a product of cultivation mainly. The fruit is chiefly cultivated in Mexico and Bourbon, and to a greater or less extent in the West Indies, Java, Mauritius, Ceylon, the Fijis, and Straits Settlements.

COLLECTION AND CURING.—The fruits are collected before they are ripe, just as they begin to turn yellow, then placed between woolen blankets in a sweating-box and left there for thirty-six hours, being afterward exposed to the noonday sun just long enough to dry off the perspiration which was thus produced. This process is repeated until the
fruit has a uniform blackish chocolate color, until the curer determines the process finished and the fruit ready for packing.

ARTIFICIAL POLLENIZATION OR FECUNDATION.—In Mexico and Guinea fertilization is left to natural influences, as by insects and by the wind; but in Reunion (Bourbon) artificial fecundation is resorted to because there is a total lack of the necessary insect life. Pollenization consists in holding the flower with the thumb and finger of the left hand, and, with a splinter of wood or bamboo held in the right hand, raising up the labellum between the pollen and the stigma, then with the forefinger of the left hand pressing the former down upon the latter. Transversely are seen several rib-like processes extending inward. These are the placentæ which support the numerous minute seeds. Projecting into the central cavity and borne on the inner cell-wall are unicellular papillose hairs; these secrete oil and resin, which elaborate vanillin.

DESCRIPTION OF DRUG.—Linear, somewhat triangularly compressed pods from 150 to 250 mm. (6 to 10 in.) long, 8 mm. (1/3 in.) thick, attenuated at the base, where they are curved more or less into a hook; flexible; externally finely furrowed longitudinally, dark brown, shining, unctuous, often covered with an incrustation of fine, acicular crystals of vanillin; they split lengthwise into two unequal valves, showing numerous minute, lenticular, glossy black seeds imbedded in a black, oily pulp, which also contains shining, acicular crystals. The peculiar, strong, aromatic odor resides chiefly in the pulp; taste warm, aromatic, sweetish.

CONSTITUENTS.—The aroma of vanilla, chiefly depends upon a crystalline principle, Vanillin 87a (U.S.P.) (C₆H₃.OH.OCH₃.CH₀, m-methoxy-p-oxybenzaldehyde), which does not exist in the green pods, but is developed during the process of curing, and forms the frosty inflorescence upon their surface. It is found in many other plants, being first made artificially from coniferin, a glucoside found in the cambium of the pine; it is now largely made from oil of cloves by reactions upon the eugenol.

Preparation of Vanillin.—Treat alcoholic extract with ether, evaporate, and treat residue with boiling water, when needles of vanillin are deposited. Prepared artificially on large scale from coniferin, C₁₀H₂₂O₈ +

2 An adulteration of benzoic acid crystals can be detected by the latter having rhomboidal form as well as characteristic reactions.
2H₂O, a compound occurring in the sap of the cambium in the Coniferae. This is first fermented and finally oxidized.

**ACTION AND USES.**—Carminative, stimulant, aphrodisiac, anti-hysteric.

Dose: 5 to 30 gr. (0-3 to 2 Gm.). It is rarely employed medicinally, being principally used as a flavor.

87a. **VANILLINUM** (U.S.P. IX) is described as methylprotocatechnic aldehyde. Should contain not more than 0.05 per cent. of ash.

**PIPERACEÆ**

Herbaceous or shrubby tropical plants, with jointed stems, and flowers, destitute of floral envelopes, arranged in spikes or spicate racemes. The entire order possesses pungent and aromatic properties, due to the presence of volatile oil and resin.

*Synopsis of Drugs from the Piperaceæ*

A. **Fruits.**  B. **Volatile Oil.**  C. **Leaves.**  D. **Roots.**

- CUBEB, 88.  
- OLEUM CUBEBÆ, 88 a.
- PIPER, 89.
- Piper Album, 90.  
- Leaves.
- Piper Longum, 91.  
- *Matico, 92.*

Yerba Mansa, 93.  
Jambu Assu, 94.  
Methysticum, 95.
The dried unripe but fully grown fruit of *Piper cubeba* Linné filius.

BOTANICAL CHARACTERISTICS.—Stem climbing, rooting at the joints. Leaves 4 to 7 inches long, petiolate, oblong to ovate. Flowers dioecious, in spikes opposite the leaves. Fruit larger than black pepper, globose, on pedicels about 1/2 of an inch long.

SOURCE.—Java, Sumatra, Borneo; also in West Indies. It grows extensively in coffee plantations or in grounds reserved for that purpose. The fruit after gathering is sent to Java, thence to Singapore, where it enters the market.

DESCRIPTION OF DRUG.—The official cubebs are picked while green, becoming brown or black and reticulately wrinkled on drying; they are about the size of a pea, still attached to the slender stalk; this stalk is longer than the fruit, and is formed by the downward lengthening of the pericarp, continuous with the prominent raised ridges on the surface of the berry. The shell or pericarp is hard, almost ligneous, and incloses a central cavity or a black, shrunken seed; odor and taste aromatic, spicy, pungent.


ADULTERATIONS.—Frequently adulterated with stems. Black pepper and other piperaceous fruits are often met with, but these are rarely intentional adulterants. *Rhamnus catharticus* (buckthorn berries) is sometimes used as an adulterant and may be readily distinguished by its four-seed fruit.

CONSTITUENTS.—**Volatile oil** (5 to 18 per cent.), cubebin, $C_{10}H_{10}O_{3}$, cubebic acid, $C_{14}H_{18}O_{4}$, resin, fat, wax, and starch. Cubebin is a colorless principle and forms the greater portion of the sediment which deposits from the official oleoresin on standing. Cubebic acid is the principle upon which depends the diuretic action of cubebs; the volatile oil is stimulating. Ash, not exceeding 8 per cent.

Preparation of Cubebin.—Precipitates from oleoresin, upon standing, in white, crystalline form; inodorous and bitter.
ACTION AND USES.—Stimulant, carminative, and diuretic. Its especial action is on the mucous membrane of the genito-urinary tract. Dose: 15 gr. to 2 dr. (1 to 8 Gm.).

OFFICIAL PREPARATIONS.

- **Oleoresina Cubebae** Dose: 5 to 30 drops (0.3 to 2 mils).
- **Trochisci Cubebae** (3/5 gr. of oleoresin in each troche) Dose: 1 or 2 troches.
88a. OLEUM CUBEBAE, U. S.—OIL OF CUBE B. A greenish volatile oil, becoming yellowish with age (colorless upon rectification), having the odor and taste of cubeb, but less pungent, and a warm, camphoraceous, aromatic taste. It has about the consistence of almond oil and is lighter than water. It is said not to preexist in the fruit, but to be formed by the prolonged action of the air. The oil consists of dipentene, cadinene, and cubeb camphor. Dose: 5 to 15 drops (0.3 to 1 mil).

89. PIPER.—PEPPER

BLACK PEPPER

The dried unripe fruit of *Piper nigrum* Linné.

BOTANICAL CHARACTERISTICS.—Aromatic shrub, with knotted, pointed branches. Leaves alternate, entire. Flowers spicate, perfect, each supported by a scale. Berry 1-seeded.

Pepper should not yield less than 6 per cent. of non-volatile ether extract, not less than 25 per cent. of starch.

The yield of total ash should not exceed 7 per cent. The amount of ash insoluble in diluted HCl should not exceed 2 per cent.

Not more than 2 per cent. of stems and foreign matter may be included.

HABITAT.—India and Cochin-China; cultivated in the East Indies.

DESCRIPTION OF DRUG.—A black, reticulated, berry-like, fruit, resembling cubebs in size and general appearance, except that it is destitute of the foot-stalk. It is hollow inside and contains a single, small, undeveloped seed. Odor aromatic and sternutatory; taste sharp, burning, and acrid.

Powder.—Characteristic elements: see Part iv, Chap. I, B.

CONSTITUENTS.—The aromatic and stimulant properties of pepper depend upon its volatile oil, *C₁₀H₁₆*, but the pungent taste and medicinal activity are mainly due to a soft, pungent resin, chavicin; a neutral principle, *piperine*, is also present which is decomposed by alkalis into piperidine, *C₅H₁₁N*, and piperic acid, *C₁₂H₁₀O₄*. The latter yields piperinal (heliotropine) by oxidation.
Preparation of Piperine.—It is deposited almost pure from freshly made oleoresin; usually has pungent resin associated with it, giving it a biting taste. It is in pale yellow prismatic crystals; odorless, with sharp, bitter taste.

ACTION AND USES.—Stimulant and carminative, its principal use being as a condiment. The principle piperine has been used as an antiperiodic. Dose of pepper: 5 to 20 gr. (0.3 to 1.3 Gm.).
OFFICIAL PREPARATION.

**Oleoresina Piperis**  
Dose: 1/4 to 2 drops (0.016 to 0.13 mil).

Commercial oil of pepper is an oleoresin from which the piperine has crystallized out.

90. **PIPER ALBUM.**—WHITE PEPPER. The ripe fruit from which the epidermis has been removed by macerating in water and rubbing off. It is usually somewhat larger than black pepper and has a smooth surface with about ten distinct lines running from base to apex; the seed fills the whole inner cavity. It contains the same principles as black pepper; is seldom used except as a condiment.

91. **PIPER LONGUM.**—LONG PEPPER. The fruit of *Piper longum* Linné, and of *Piper officinarum* De Candolle. Habitat: Southeastern Asia. It consists of cylindrical spikes of the fruits, 25 mm. (1 in.) or more in length; in the market they are of an earthy, grayish-white appearance, but exhibit their deep reddish-brown color when washed. The individual berries are ovoid, about 2.5 mm. (1/10 in.) long, with a nipple-like point at the apex and a bract at the base; they are arranged spirally on the axis. Medical properties same as those of black pepper, but they are inferior and seldom used.

92. **MATICO.**—MATICO, N.F.

**MATICO**

The leaves of *Piper angustifolium* Ruiz et Pavon, are readily recognized by the prominent veining of their under surface; upper surface dull green, tessellated or checkered. Odor slight, taste aromatic; contains volatile oil (2 per cent.), resin, tannin, a bitter principle and artanthic acid. Used as an aromatic, stimulant, tonic and styptic. Special action on mucous membrane. Dose: 1/2 to 2 dr. (2 to 8 Gm.).

93. **YERBA MANS**-A **-T**.—The root of *Houttuynia (Anemopsis) californica* Bentham and Hooker. Stimulant, tonic, and astringent; used with good results in malarial fevers. Dose of fl'ext.: 15 to 60 drops (1 to 4 mils)

94. **J AMBU ASSU.**—The root of *Piper jaboran'di* Vell. Used in its native country, Brazil, as a sudorific like pilocarpus. Dose: 15 to 30 gr. (1 to 2 Gm.).

95. **KAVA, N.F.**—(KAVA- KAVA). The root of *Piper methysticum*, obtained from a shrub indigenous to the Sandwich Islands. A large, woody, but spongy root, having a thin, grayish-brown bark and a yellowish meditullium which is radiate; usually comes in whitish segments. Odor fragrant, like a perfume rather than a spice; taste pungent, slightly benumbing. Used as a remedy in the treatment of diseases of the mucous membrane, as tonic to the digestive organs, and stimulant to the nerves; also as a diuretic. It perhaps has some reputation as a remedy in gonorrhea.
SALICACEÆ.-Willow family

Dioecious trees or shrubs with both kinds of flowers in catkins; fruit bearing numerous seeds furnished with long, silky down.

96. SALIX.—WILLOW. The bark of Salix alba Linné, and of other species of Salix. Habitat: Europe; naturalized in North America. The best bark is that collected from the older branches, coming in thin fragments or quills, the thin brownish or yellowish periderm of which overlays a greenish parenchymatous layer. The bark from the trunk is deprived of the outer layer, pale cinnamon-brown, exfoliating; fibrous. Inodorous; taste bitter and astringent. Two varieties—white willow and purple willow, S. purpurea (see below).

Fig. 57.—Salix alba—Branch.
CONSTITUENTS.—Tannin about 12 per cent., most abundant in the white willow, and a bitter neutral principle, salicin, which is the active glucosidal constituent, occurring and coming into market in silky, shining, white needles, or grains; it exists most abundantly in the purple willow, but may be extracted from various other species and from various species of Populus, where it is combined with populin (benzoyl salicin). The degree of bitterness in the barks is probably the best criterion of the value of the several species.

96a. SALICINUM (U.S.P. IX).—It occurs in white, shining, bitter crystals, soluble in 28 parts of water and 68 parts of alcohol. Boiled with sulphuric acid it is converted into saligenin or saligenol, C\textsubscript{7}H\textsubscript{8}O\textsubscript{3}, and glucose, according to the following formula: $C_{13}H_{18}O_{7} + HO = (C_{6}H_{4})(OH)CH_{2}OH + C_{6}H_{12}O_{6}$. By oxidation with potassium bichromate and sulphuric acid, salicylic aldehyde, C\textsubscript{6}H\textsubscript{4}O.COH, is formed, having the fragrant odor of the oil of meadowsweet (Spiraea ulmaris) and of heliotrope. Tonic, astringent, febrifuge. Dose: 15 to 60 gr. (1 to 4 Gm.). The bark itself is rarely employed, however, salicin being used instead in doses of 10 to 30 gr. (0.6 to 2 Gm.). Ash, not more than 0.05 per cent.

Preparation of Salicin.—Obtained by adding lead subacetate to a decoction of the bark, precipitating the excess of lead with H\textsubscript{2}S. Evaporate liquid. Add, near the end of the process, sufficient quantity of animal charcoal to decolorize; filter the liquid while hot. Upon cooling, salicin will deposit in crystalline form.

97. POPULUS.—WHITE POPLAR. AMERICAN ASPEN. The bark of Populus tremuloides Michaux. Tonic and febrifuge. Its active principle, populin, is analogous to the salicin of salix (96). Dose of fl'ext.: 30 to 60 drops (2 to 4 mils).

98. POPULUS BALSAMIFERA.—BALM OF GILEAD BUDS. The buds of Populus balsamifera Linné, variety candidans Gray. Populi Gemmæ (Balsam Poplar buds, Balm of Gilead buds, N.F.). Habitat: Northern North America and Siberia. These buds, as well as those of other species of Populus, are covered with a resinous exudation which is impregnated with a fragrant volatile oil, and is very similar in medicinal action to the turpentine oleoresins. Dose of fl'ext.: 30 to 60 drops (2 to 4 mils).

MYRICACEÆ.—Sweet-gale Family

99. MYRICA, N.F.—BAYBERRY BARK. WAX MYRTLE. The bark of Myrica cerifera Linné, an indigenous plant growing on seashores, the fruit of which is covered with a layer of white vegetable wax. This bark is occasionally used in medicine as a tonic, and as an astringent gargle in sore throat, etc. Dose of fl'ext.: 15 to 30 drops (1 to 2 Mils).

100. COMPTONIA.—SWEET FERN. The leaves of Comptonia asplenifo'lia Aiton, an indigenous herb. They are linear-lanceolate, with deep, alternate, rounded lobes, and have a spicy odor, especially when rubbed. Stimulant and astringent. Dose: 15 to 30 gr. (1 to 2 Gm.).
JUGLANDACEÆ.-Walnut Family

A small family of trees with monoecious flowers and the fruit a nut.

101. JUGLANS, N.F.—BUTTERNUT. The root-bark of *Juglans cineerea* Linné, collected in autumn. Off. U.S.P. 1890. Corky layer very thin, smooth, grayish, easily removed, leaving a smooth, deep-brown surface; inner surface pure white when the bark is first removed from the tree, but changes to deep brown on exposure. In the market it is found in flat or curved pieces about 4 of an inch (5 mm.) thick, the outer surface dark gray and nearly smooth, or, deprived of the soft cork, deep brown, the inner surface striate. Fracture short, whitish-and-brown checkered; medullary rays somewhat diagonal; odor feeble; taste bitter, somewhat acrid. The leaves and bark of *Juglans nigra* (101a) (black walnut) have been used as an alterative and deobstruent, and the bark of *Carya alba* (101b) (shellbark hickory) as a tonic and antiperiodic. The kernels of the nuts of all these trees yield about 25 per cent. of a pale greenish fixed oil (Oleum Juglandis, or nut oil), used as a demulcent. Constituents: Bitter oily extractive, in large proportion juglandic acid, C_{10}H_{6}O_{8}, tannin (?), two other acids, one of them volatile, with potassium, sodium, and other salts. A mild cathartic, especially valuable in habitual constipation. It was much used in the army during the Revolutionary War. Dose: 1 to 2 dr. (4 to 8 Gm.).

CUPULIFERÆ (Fagaceae).-Oak Family

An important order on account of its valuable wood. It is characterized by alternate leaves and monoecious flowers, the sterile ones in catkins, the fertile in clusters or spikes, and the fruit a 1-seeded nut, with or without a woody, scaly involucre (cupule).

**Synopsis of Drugs from the Cupuliferae**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fagus, 104.</td>
<td><strong>ACIDUM GALLICUM</strong>, 105 b.</td>
<td><strong>D. Heart-wood.</strong></td>
</tr>
</tbody>
</table>

102. QUERCUS, N.F.—WHITE OAK

WHITE OAK

The bark of *Quercus alba* Linné, collected from trunk or branches ten to twenty-five years of age and deprived of the periderm.

DESCRIPTION OF DRUG.—Flat pieces about 6 mm. (1/4 in.) thick, deprived of the thick, corky layer; pale brown; coarsely fibrous; inner surface traversed by prominent longitudinal ridges; fracture coarse, fibrous (the tissue contains groups of stone cells...
and crystals of calcium oxalate); odor faintly tan-like; taste very astringent. It is usually found in the shops as a coarse, fibrous powder.

**CONSTITUENTS.**—**Quercitannic acid** 6 to 11 per cent., a coloring matter, a bitter principle (quercin), sugar (quercite), resin, etc. The active principles are soluble in water and alcohol. The amount of tannin varies with the species, the part of the tree, and the season of the year when gathered; the young bark contains a greater
proportion than the old.

Quercitannic Acid.—Two forms of this principle exist, according to Lowe—one soluble in water, of the formula $C_{28}H_{28}O_{14}$, and the other scarcely soluble, $C_{28}H_{24}O_{12}$. Both are changed by the loss of water into oak red, $C_{28}H_{22}O_{11}$.

Quercitron.—Under this name large quantities of black oak (Quercus tinctoria) bark deprived of its epidermis and reduced to a coarse powder are sent from the United States to Europe as a dye. The coloring principle is called quercitron, $C_{36}H_{38}O_{30}$. This glucoside splits up by hydrolysis into quercetin and isodulcite, or rhammose, $C_{6}H_{12}O_{5}(C_{5}H_{9}O_{5}CH_{3})$. Quercetron (Xantho rhamnin) forms yellowish crystals, odorless and tasteless, but in hot aqueous or alcoholic solution has a bitter taste.

Preparation of Quercin.—Boil bark in acidulated ($H_{2}SO_{4}$) water; add milk of lime to neutralize; filter; add $K_{2}CO_{3}$. Yellow needles slowly form on evaporation of alcoholic solution of above precipitate.

ACTION AND USES—Astringent and tonic, generally used externally in infusion or decoction as an astringent and tonic bath, injection, etc. Dose: 15 to 60 gr. (1 to 4 Gm.). Fluidextractum Quercus, average dose 2 mils.

103. ALNUS SERRULAT A Willdenow.—TAG ALDER. Habitat: North America. (Bark.) Tonic, astringent, and alterative. Dose: 30 to 60 gr. (2 to 4 Gm.).

104. FAGUS FERRUGINEA Aiton.—AMERICAN BEECH. (Bark and leaves.) Astringent and slightly tonic.

105. GALLA.—NUTGALL

GALLS

An excrescence on the young twigs Quercus infectoria and other species of Quercus produced by the punctures and deposited ova of Cynips gallæ tinctoriae (Fig. 59) Olivier (class, Insecta; order, Hymenoptera). Not more than 5 per cent. of Galls float in water.

BOTANICAL CHARACTERISTICS.—A shrub or small tree 6 to 8 feet high. Leaves short-petiolate, obovate-oblong, obtusely toothed, oblique at base. Acorn solitary, obtuse, two or three times the length of the cup.

HABITAT.—Levant.

DESCRIPTION OF DRUG.—Hard, heavy, subglobular, from the size of a pea to that of a large cherry, contracted below into a short stipe and covered above with a few or many prominent warts.
(tuberculated) between which the surface is smooth. Heavy, sinking in water, except the smaller ones which should not be present to a greater extent than 5 per cent. Externally dark bluish or lead color, frequently with a greenish tinge, often with a circular hole near the middle upper part, communicating with the central cavity. They break with a flinty fracture, showing a whitish or brownish interior, with often a central cavity, lined with a thin, hard shell, which contains the insect in all stages of development, or the pulverulent remains of the developed insect mixed with partly eaten fragments of the starchy parenchyma. Odorless; very astringent.

Fig. 59.—Quercus lusitanica—Branch and nutgall.
STRUCTURE.—The tissue is chiefly parenchyma, loaded with tannin and chlorophyll; the cavity lining is composed of stone cells containing calcium oxalate crystals, within this cavity, if not eaten out, is a starchy parenchyma.

VARIETIES.—Most of the oaks are occasionally affected as the above species, the resulting excrescence, known as galls, developing a tannin which may be employed for various practical purposes. The Aleppo or Syrian, dark colored and heavy (although the designation Aleppo is not wholly applicable to the official galls—"Galla"), are the products of different parts of Asiatic Turkey; still the name is applied to this variety. Smyrna galls, grayish-olive color, intermixed with white galls. Sorian, size of a pea, blackish. Japanese and Chinese from Rhus simulata, $\frac{1}{2}$ to 2 inches long, ovate, very irregular, tubercular, grayish downy, inclosing the remnants of numerous insects. The Chinese make use of this product in dyeing and as a medicine.

Powder.—Gray. The microscopic elements consist of: See Part iv, Chap. I, B.

CONSTITUENTS.—Tannin 65 to 77 percent. (Acidum Tannicum, gallotannic acid 105a), chemically known as digallic acid, $C_{14}H_{10}O_{9}$. It is a yellowish-white amorphous substance, insoluble in absolute ether, chloroform, benzol, benzin, and carbon disulphide, soluble in glycerine, alcohol, and water; precipitated blue-black by ferric salts, and white by gelatin. It appears to exist, in part at least, as a glucoside and digallic acid. Digallic acid may be considered as an anhydride of gallic acid, $C_{7}H_{6}O_{5}$, formed from two molecules of the latter by elimination of one molecule of water. Gallic acid also exists in galls. It is precipitated blue-black by ferric salts, the color disappearing on boiling, and is not affected by gelatin when gum is absent.

Preparation of Tannic Acid.—Powdered nutgall is exposed to damp atmosphere for twenty-four hours, then made into paste with washed ether. Allow to stand six hours, then express in canvas cloth between tinned plates. After powdering the pressed cake, again make into paste with washed ether. Repeat the former process and allow the mixed liquid to evaporate spontaneously.

ACTION AND THERAPEUTIC PROPERTIES.—When taken into the digestive tract some of it is changed into gallic acid and absorbed as such; while some may be taken up as a soluble alkaline tannate.

Because of its power and lack of toxicity, tannic acid is one of the most
widely used of all the astringents, either in the form of the tannic acid itself or of one of the various vegetables containing it.

Locally applied it may be used to overcome relaxation, as in spongy gums, mercurial sore mouth, hemorrhoids, and chronic sore throat.

To check hemorrhage it may be used whenever the source of flow can be reached directly, as in epistaxis, hematemesis, hemorrhage from the bowels, etc.

Tannic is useful as an antidote against a number of poisons including most of the irritant metallic salts, especially those of antimony and iron. Dose: 8 gr. (0.6 Gm.).

**Official Preparations.**

Preparations commonly employed:

- Unguentum Gallæ (20 per cent.).
- Acidum Tannicum. Dose: 10 to 20 gr. (0.6 to 1.2 Gm.).
- Trochisci Acidii Tannici. Each 1 gr. (0.06 Gm.).
- Glyceritum Acidii Tannici (20 per cent.), Local use.
- Unguentum Acidic Tannici (20 per cent.). Local use.
- Collodium Stypticum (2 per cent.), Local use.

**105b. ACIDUM GAL LICUM, U.S.—GALLIC ACID.** Usually prepared from tannic acid. Also prepared by exposing moistened powdered nutgalls to the action of the air for a month or more; a peculiar fermentation sets in which converts the tannic acid into gallic acid; this is extracted by expression and purified by filtration and crystallization. It is in *light, silky, acicular needles*, colorless when pure, but as usually seen in the shops, of a more or less *pale brownish color*; inodorous; taste sourish and astringent. It differs from tannic acid in its sparing solubility in cold water, and in not precipitating gelatin or alkaloids from their solutions. It is less astringent than tannic acid, and inferior to it in all respects except where the astringent effect must be reached through the medium of the general circulation. When applied locally, gallic acid acts as a mild astringent, but does not cause coagulation of the blood, for which reason it is not used locally in the control of hemorrhage. Dose: 5 to 30 gr. (0.3 to 2 Gm.).

**105c. PYROGALLOL, U.S.—PYROGALLIC ACID.** A triatomic phenol, $C_6H_3(OH)_3$, obtained chiefly by the dry distillation of gallic acid. It is in light, white, shining laminæ, or in fine needles, becoming gray or darker when exposed to the air or light, and should therefore be kept in amber-colored bottles; inodorous; astringent. Soluble in water and
alcohol. **Used exclusively externally** in the form of ointments, in lupus, psoriasis, and other **skin diseases**. Its absorption through abrasions in the skin has caused death by general poisoning.

106. **CASTANEA**, N.F.—CHESTNUT. The leaves of *Castanea dentata* Sudworth, collected in September or October while yet green. Off. U.S.P.1890. Oblong, elliptical, from 150 to 250 mm. (6 to 10 in.) long, and about 50 mm. (2 in.) broad, with a sharply pointed apex and a short petiole; margin somewhat unequally, but strongly, repand-dentate, with prominent parallel veins beneath each tooth (feather-veined); texture firm, flexible; odor slight; taste somewhat astringent. Constituents: Tannic acid about 9 per cent., gum, albumen, salts, and traces of resin and fats. Tonic and astringent, used almost exclusively in whooping-cough in the form of infusion or fl’ext. Dose: ½ to 2 dr. (2 to 8 Gm.).

**Fluidextractum Castaneae**, U.S.P. 1890, Dose: 1/2 to 2 fl. dr. (2 to 8 mils).

**107. OLEUM BETULÆ.**—**VOLATILE OIL OF BETULA**

**OIL OF SWEET BIRCH**

A volatile oil distilled from the bark of *Betula lenta* Linné (Fam. Betulaceae, U.S.P. 1900).

**BOTANICAL CHARACTERISTICS.**—A tree often exceeding 60 feet in height, with a diameter of 2 or 3 feet. The trunk is invested with a dark brown or reddish bark, separating in thin layers. Remarkable for its agreeable fragrance and flavor. Leaves cordate, ovate-acuminate, acutely, finely, and doubly serrate, veined beneath. Flowers monoecious, sterile catkins 2 or 3 inches long, fertile much shorter and thicker; petals hairy; wood reddish, strong, compact.

**DESCRIPTION.**—This oil is **identical with methyl salicylate**, CH₃C₇H₆O₃, and nearly identical with **oil of wintergreen** (413a). Its specific gravity is 1.18. In fact, is one of the sources of commercial oil of wintergreen. Dose: 5 to 30 drops (0.3 to 2 Mils).

It should be kept in well-stoppered bottles, protected from the light.
107a. OLEUM BETULÆ EMPYREUMATICUM RECTIFICATUM, N.F.—Obtained by the dry distillation of the bark and wood of Betula alba and rectified by steam distillation. Is used mainly as an external remedy in cutaneous diseases.

108. OSTRYA VIRGINICA.—IRON-WOOD. HOP-HORNBEAM. The wood has some reputation as an antiperiodic, tonic, etc. The fl’ext. is used in malaria, in doses of \( \frac{1}{2} \) to 1 fl. dr. (2 to 4 mils).

**URTICACEÆ.—Nettle Family**

A large and very diversified family, consisting of herbs, shrubs, or trees, sometimes with a milky juice yielding caoutchouc; some species have a bark which yields mucilage; the nettleworts are remarkable for the caustic secretion of their glandular stinging-hairs; the juice of the hempworts (suborder Cannabineæ) is bitter and narcotic.

**Synopsis of Drugs from the Urticaceae**

<table>
<thead>
<tr>
<th>A. Bark.</th>
<th>D. Herb.</th>
<th>F. Fixed Oil.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULMUS, 109.</td>
<td>CANNABIS, 112.</td>
<td>Oleum Cannabis, 112 b</td>
</tr>
<tr>
<td>B. Strobiles.</td>
<td></td>
<td>G. Fruits.</td>
</tr>
<tr>
<td>HUMULUS, 110.</td>
<td></td>
<td>*Ficus, 114.</td>
</tr>
<tr>
<td>*Lupulinum, 111.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 61.—Ulmus fulva—Branch.

Sayre's Materia Medica - Page 100
109. ULMUS.-ELM

SLIPPERY ELM BARK

The dried bark of *Ul'mus ful'va* Michaux (Fam. transferred to Ulmaceae—U. S. P. 1900), deprived of its periderm.

BOTANICAL CHARACTERISTICS.—A tree 40 to 60 feet high. Leaves ovate-oblong, taper-pointed, doubly serrate, very rough above. Flowers nearly sessile, in lateral clusters, purplish or brownish. Fruit a 1-celled, 1-seeded samara, winged all around.

HABITAT.—North America, north of the Carolinas and east of Nebraska.

![Cross-section of Ulmus bark](image1)

**Fig. 62.—Ulmus—Cross-section of bark. A. Bast fibers. B. Parenchymatous tissue. C. Mucilage ducts. D. Medullary rays.**

DESCRIPTION OF DRUG.—Various sized **flat pieces** about 4 mm. (1/6 in.) thick **deprived of cork**, of a uniformly pale brownish-white color, the finely ridged inner surface with a slight reddish tinge; good specimens are **tough and flexible**, capable of being bent double. The
texture consists of soft parenchymatous tissue with tangentially arranged bast fibers and numerous medullary rays, giving to a cross section of the bark a delicately checkered appearance. Odor agreeable, resembling fenugreek. Taste highly mucilaginous. It yields a fawn-colored powder which is often adulterated with starch. European elm bark, from U. campestris and U. effusa, cinnamon-colored, nearly inodorous, mucilaginous, but has a bitterish and astringent taste, owing to the presence of a little tannin. A few nearly spherical starch grains (0.005 to 0.01 µ in diameter) are sometimes present.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—A large quantity of mucilage (capable of precipitation with alcohol and lead acetate), and some tannin.

ACTION AND USES.—Demulcent—externally as an emollient application, in poultice. Dose: 2 dr. (8 Gm.) or more.

110. HUMULUS.—Hops

HOPS

The strobiles of Humulus lupulus Linné, carefully dried-bearing the whole of their natural glandular coating (Fam. transferred to Moraceae, U.S.P. 1900).

BOTANICAL CHARACTERISTICS.—Rough, climbing perennial. Leaves palmately 3- to 7-lobed, roughish, ovate. Flowers dioecious, the fertile flowers forming a strobile in fruit; calyx, akene, etc., thickly studded with yellowish, resinous grains, which give the bitterness and aroma to the hops.

HABITAT.—North Temperate Zone.

DESCRIPTION OF DRUG.—Strobile about 30 mm. (11/5 in.) long, cone-shaped, consisting of numerous membranous, greenish-yellow scales attached to a thin, undulating, hairy axis; the scales are oval, leaflike, translucent, showing delicate veins, and surround a subglobo-lar akene; there are also, covering the surface of the scales at the base and adhering to the zigzag axis, small yellow grains of lupulin, upon which the value of hops depends. Odor strong, peculiar, somewhat narcotic; taste bitter, aromatic, slightly astringent.

Powder.—See Part iv, Chap. I, B.
CONSTITUENTS.—**Lupulin** (Lupulinum, U.S.), volatile oil (0.08 per cent.), resin, choline, and tannin. Ash, not exceeding 8 per cent.

ACTION AND USES.—Tonic, anodyne, and slightly narcotic. Dose: $\frac{1}{2}$ to 5 dr. (2 to 20 Gm.), in infusion or tincture. Externally as an anodyne or sedative in fomentation or poultice.

111. **LUPULINUM, N.F.—LUPULIN.** The granular powder separated from humulus, bright yellow, becoming yellowish-brown with age; mixed with minute scale particles; resinous; **odor** peculiar, aromatic, like hops, but stronger; taste bitter. Under the microscope each gland is seen to be composed of two reticulated hemispheres, one narrow and one round; the narrow one collapses on drying, giving to the granule a hood-shaped appearance. They are filled with an oleoresin, the volatile oil of which contains a trace of valerianic acid, and valerol, which passes into valerianic acid when kept a long time, causing the valerian-like odor of old hops—lupamaric acid, $C_{35}H_{35}O_4$.

ACTION AND USES.—Same as hops. Dose: 6 to 15 gr. (0.4 to 0.1 Gm.), in capsules or pills, the latter of which may be made by simply rubbing the powder with warm water until it becomes adhesive.

**Fluidextractum Lupulini**

**Dose:** 10 to 30 drops (0.6 to 2 Mils).

**Oleoresina Lupulini**

**Dose:** 3 to 6 drops (0.2 to 0.4 mil).

112. **CANNABIS.**—**INDIAN CANNABIS**

**INDIAN HEMP.**

The dried flowering tops of the pistillate plant of *Cannabis sativa* Linné or of the variety *indica*, Lamarck (Fam. Moraceae), freed from thicker stems and large foliage leaves, and without admixture of more than 10 per cent. of fruits.

TEST.—When made into a fl'ext. and assayed biologically, produces incoordination when administered to dogs in a dose of not more than 0.03 mil of fl'ext. per kilogramme of body weight.

BOTANICAL CHARACTERISTICS.—Stem 4 to 8 feet high, annual, tall, and roughish, the inner bark consisting of tough fibers. Leaves palmately 5- to 7-divided, the leaflets coarsely serrate. Flowers dioecious green, in compound, axillary racemes or panicles. Akene globose, crustaceous.

SOURCE.—The plant is indigenous to Asia, from India northward to Western China and Caspian Sea. Its cultivation has extended to Central and Southern Europe, Russia, Brazil, and the Western United States—in fact, it may be said to grow in all civilized countries on the globe.
DESCRIPTION OF DRUG.—Cannabis indica occurs in commerce as bundles of the flowering tops; the branches, digitate leaves, and the numerous flower-bracts are more or less compressed, and agglutinated together with a resinous exudation; color brownish-green; odor peculiar, narcotic; taste bitterish, somewhat acrid. It is sold in Indian bazaars for smoking purposes as “gunjah.” The leaves, small stalks, and capsules, dried separately and mixed with aromatics and fruits, form the Arabian confection, “hashish, bhang, or siddhi.” “Churrus” is a brown, earthy-looking resin, brushed off from the plants by leather-clad men running through the field.

Cannabis americana, the plant grown in various parts of the United States, acts similarly to the official plant. See article by author, “Cultivation of Medicinal Plants in U. S.” Jour. Amer. Phar. Assoc., 1915
CONSTITUENTS.—The resin and a yellow, aromatic volatile oil, \( \text{C}_{10}\text{H}_{16} \), are its most important constituents. The former, cannabin (15 to 20 per cent.), is a brown, amorphous powder, soluble in absolute alcohol (but not in cold alcohol of 89 to 90 per cent.), from which solution it is thrown down as a white precipitate by water; it is very potent, 33 of a grain acting as a powerful narcotic; it comes into the market as cannabin tannate; choline, \( \text{C}_{5}\text{H}_{15}\text{NO}_{2} \), syrupy, soluble in alcohol and water, very sensitive to Mayer's reagent, yielding a yellow, crystalline precipitate, is probably the same as the so-called alkaloid, “tetanocannabinine.” Ash, not exceeding 15 per cent.

Cannabinol.—This principle has been obtained by Wood, Spivey, and Ester held from the exudate of cannabis indica (charas). Several different fractional distillates from the ethereal extract of this exudate were obtained. Among these distillates is cannabinol, \( \text{C}_{18}\text{H}_{24}\text{O}_{2} \), boiling at 265ºC. It is oleaginous and has a red color. This they have found to largely represent the active principle. A condensed account of the pharmacology of cannabis indica, as contributed by Dr. C. R. Marshall, may be found in “Western Druggist,” 1889, pp. 163-166.

Preparation of Cannabin.—Treat drug with water made alkaline with \( \text{Na}_{2}\text{CO}_{3} \); exhaust dry residue with alcohol; add milk of lime; precipitate with \( \text{H}_{2}\text{SO}_{4} \); treat filtrate with animal charcoal. From the resulting liquid, concentrated, cannabin is precipitated by water.

ACTION AND USES.—Powerful narcotic. The primary effect of the drug is that of exhilaration, intoxication, stimulating the imagination, etc. This is followed by depression, drowsiness, and stupor, the heart becomes weak and slow and the pupil dilated. It has some advantages over opium, it is claimed, in that it is not constipating, and interferes less with digestion; it is more acceptable in certain morbid states of the system and nervous disquietude. Dose: 3 to 5 gr. (0.2 to 0.3 Gm.).

OFFICIAL PREPARATIONS.

112a. CANNABIS SEMEN.—HEMP SEED. These have been used in the form of emulsion as demulcent and anodyne, depending upon the fixed oil which they contain. They are mostly used as a bird-seed, however, and for the extraction of the fixed oil.

112b. OLEUM CANNABIS.—OIL OF HEMP. A greenish fixed oil, becoming lighter and brownish on exposure; odor hemp like; taste mild. Used as a demulcent and protective. Neither it nor the seed are thought to have any narcotic action.

Sayre’s Materia Medica - Page 105
113. **URTICA.**—NETTLE. STINGING NETTLE. The herb of *Urtica dioica* Linné
Habitat: United States and Europe, Tonic, astringent, and a valuable diuretic. As an
astringent it is chiefly used in uterine hemorrhages. Dose: 20 to 40 gr. (1.3 to 2.6
Gm.).

114. **FICUS.**—FIG, N.F.

The partially dried fruit of *Ficus carica* Linné (Fam. Moraceæ, U.S.P. 1900).
BOTANICAL CHARACTERISTICS.—A small tree with palmately lobed, cordate leaves. Flowers monoecious, inclosed within a pear-shaped receptacle which converges so as to leave only a small orifice at the apex; style single; stigmas 2.

HABITAT.—Levant; cultivated extensively in the Mediterranean Basin and subtropical regions.

COLLECTION.—Figs are either left on the tree to dry or are dried after being gathered by artificial heat or the heat of the sun, and in this condition are called “natural figs,” or they are rendered pliant by pulling and kneading. They are then packed in boxes or drums and known as “pulled figs.” The largest and best are those of Smyrna and Turkey, the best Smyrna being known as “Eleme figs.” The largest amount is imported from Asiatic Turkey, and the remainder from Spain, Portugal, and other countries.

DESCRIPTION OF DRUG.—Figs come into market compressed, and covered with an efflorescence of sugar which melts in warm weather and makes them soft and moist. They are yellowish or brownish, somewhat translucent, and consist mostly of a sweet, viscid pulp, in the center of which are numerous small, yellow ovaries, or akenes, popularly regarded as seeds; odor peculiar; taste sweet, mucilaginous. When soaked in water they may be opened out to their original pear-shaped form, showing the short stalk, or its scar, at the base or pointed end, and scales at the large end surrounding an orifice near which the staminate flowers were situated; the numerous akenes, or ovaries, of the pistillate flowers cover the walls of the hollow interior.

CONSTITUENTS.—Grape sugar (60 to 70 per cent.), gum, fat, and salts.

ACTION AND USES.—Nutrient, laxative, and demulcent. Their principal use medicinally is as a laxative diet in constipation, freely given, which action in dried figs is mainly due to the indigestibility of the seeds and tough skin. Dose: 4 dr. (15 Gm.).

OFFICIAL PREPARATION.

Confectio Sennæ (12 per cent.), Dose: 1 to 3 dr. (4 to 12 Gm.).

115. MORUS.—MULBERRY. The fruit of Mo'rus ru'bra, M. nigra, and M. alba Linné, indigenous trees. Dense, cylindrical spikes of the small fruit, differing in size, shape, and color in the different species. They are all used in the fresh state as a refrigerant.

SANTALACEAE.—Sandalwood Family

116. SANTALUM ALBUM, N.F.—SANDALWOOD. The wood of San'talum al'bum Linné, and other species of Santalum. It comes in billets from 100 to 150 mm. (4 to 6 in.) in diameter, or in split slices; color varying, yellowish, whitish, or brownish; it has only a feeble taste, but an aromatic odor, particularly when rubbed or in powder. Contains from 1 to 4 per cent. of volatile oil.
116a. **OLEUM SANTALI**, U.S.—OIL OF SANTAL. A yellowish, somewhat thick volatile oil, having a peculiar, strongly aromatic odor, and a pungently aromatic taste. It is a valuable remedy in inflammation of the mucous membrane, used especially in gonorrhea and bronchitis. Its principal use is in the manufacture of perfumery. Dose: 10 to 30 drops (0.6 to 2 Gm.) administered usually in capsule.

**LORANTHACEÆ.-Mistletoe Family**

117. **MISTLETOE**.—The bark of *Phoraden'dron flavesc'ens* Nuttall, a parasitic evergreen growing on various trees, particularly on fruit trees. Laxative, oxytocic, and antispasmodic. As an oxytocic it is claimed to be superior to ergot. Dose: 15 to 60 gr. (1 to 4 Gm.).
ARISTOLOCHIACEÆ.—Birthwort Family

Climbing shrubs, or low herbs, with perfect flowers, the lurid calyx coherent, with the ovary, which forms a 6-celled capsule or berry in fruit. Leaves petiolate. Principal constituents are volatile oil and resinous principles.

118. SERPENTARIA.—SERPENTARIA

VIRGINIA SNAKE-ROOT

The dried rhizome and roots of *Aristolochia serpentina* Linné (Virginia), and of *Aristolochia reticulata* Nuttall (Texas).
BOTANICAL CHARACTERISTICS.—Stem 8 to 15 inches high, pubescent. Leaves alternate, ovate, or oblong, with a heart-shaped or halberd-shaped base. Flowers all next the root, short-peduncled; calyx-tube bent like the letter S; stamens 6, the sessile anthers adnate to the fleshy style.

HABITAT.—United States (Virginia and Texas).

DESCRIPTION OF DRUG.—A rhizome about 25 mm. (1 in.) long, and about the thickness of a quill, contorted, bent up and down, externally light grayish-brown, with short stem-bases on the upper side and numerous long, fibrous, branching rootlets below, interlaced; internally grayish, closely matted. The bark is thin, overlaying quite a large woody zone, and separated into wood-wedges by broad medullary rays; the pith is not in the center but is nearer the upper side, making the lower wood-wedges the longest. Odor family terebinthinate, characteristic; taste warm, bitter, and camphoraceous. Virginia and Texas Serpentaria are both recognized by the U.S.P. The latter is about twice as large as the former, with fewer and thicker rootlets.

ADULTERATIONS.—As found in commerce, Serpentaria is frequently adulterated with portions of the stem. Hydrastis canadensis has been used as an intentional adulteration; also spigelia. All of these may easily be distinguished from the genuine by their general characteristics.

Powder.—Characteristic elements: See Part iv, Chap. 1, B.
CONSTITUENTS.—Volatile oil ($\frac{1}{2}$ per cent.), containing borneol, aristolochine, $C_{32}H_{22}N_2O_{13}$ (very bitter), tannin, resin, starch, etc.

Preparation of Aristolochine.—Precipitate decoction with lead acetate; ex. haust precipitate with hot alcohol; evaporate; dissolve out alkaloid with water. It is bitter, yellow, amorphous, or in needles; soluble in alcohol, water, precipitated by tannin.

ACTION AND USES.—Aromatic stimulant and tonic. Its only possible therapeutic virtue is as a stimulant to the gastric mucosa—Wood.

Dose: 5 to 30 gr. (0.3 to 2 Gm.).

Tinctura Cinchonae Composita (2 percent. of serpentaria) 1 to 4 fl. dr. (4 to 15 mils).

119. ASARUM CANADENSE Linné.—CANADA SNAKE-ROOT. Asarum, N.F. WILD GINGER. A long, creeping rhizome, more or less contorted. In commerce broken into pieces from 100 to 150 mm. (4 to 6 in.) long, from the thickness of a straw to that of a goose-quill; somewhat quadrangular or twoedged; externally grayish-brown, longitudinally wrinkled, beset with small fibers, easily broken off; internally nearly white, the small wood-bundles surrounding a large pith; odor peculiar, aromatic; taste aromatic and pungent. It contains a large percentage of volatile oil which is often used in perfumery. This contains asarol, probably identical with linalool, its acetic and valerianic esters, methyl eugenol. Aromatic stimulant and tonic. Dose: 30 gr. (2 Gm.).

POLYGONEÆ.-Buckwheat Family

Herbs or woody plants with alternate, entire leaves, and with the stipules in the form of sheaths above the smaller joints of the stem. Fruit an akene. The leaves and stem are very rich in crystals of calcium oxalate.

<table>
<thead>
<tr>
<th>Synopsis of Drugs from the Polygoneæ</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Roots.</td>
<td>B. Rhizome.</td>
</tr>
<tr>
<td><strong>RHEUM</strong>, 120.</td>
<td>Bistorta, 124.</td>
</tr>
<tr>
<td>*Rumex, 121.</td>
<td>C. Herb.</td>
</tr>
<tr>
<td>Canaigre, 122.</td>
<td>Polygonum, 123.</td>
</tr>
</tbody>
</table>

120. RHEUM.—RHUBARB

RHUBARB

The dried rhizome and roots of *Rhe'u'm officinale* Baillon, *Rheum palmatum* Linné, and the var. *Tanguticum* Maximowicz, and probably other species of Rheum, deprived of most of the cortex and carefully dried.

Sayre's Materia Medica part II - Page 3
BOTANICAL CHARACTERISTICS.—Botanical history somewhat obscure. It is known, however, from authentic specimens, that the plant is a herbaceous perennial with acidulous juice, resembling the garden rhubarb, but attaining a larger size than any other species. Leaves very large, roundish, cordate at base, and 5- to 7-lobed. The flower-stem, 6 to 8 feet high, bears flowers having a greenish perianth; ovary (and fruit) triangular, 1-celled.

SOURCE.—Rhubarb is obtained from many species of Rheum, mostly natives of Asia, especially of China, Chinese Tartary, and Thibet. Russian or Turkish rhubarb—so called because all of it imported into these countries from China had to be submitted to official inspection—is now never found in the market. The caravan commerce between Russia and China has been an important one for many generations, and the rhubarb in European commerce was almost entirely carried from China through Persia and Asia Minor; hence the old name of Turkey rhubarb. Later on it was brought through Northern China, Siberia, and European Russia (Kiachta) to St. Peters burg.

The “Russian rhubarb” of early times was evidently what is now known as Shensi variety. That brought into the trade by the port of Canton, known in Europe as Indian rhubarb, is now called Canton. The Chinese rhubarb is the variety recognized in commerce. The root, often attaining a weight of fifty pounds, is cut up into pieces of a suitable size for drying, holes being usually bored through the pieces and a string passed through for hanging them up.

DESCRIPTION OF DRUG.—In cylindrical, conical, or plano-convex pieces, or pieces with no regular shape, varying in size from 75 to 150 mm. (3 to 6 in.) long, and 50 to 75 mm. (2 to 3 in.) thick; they are usually sorted into “round” and “flat” rhubarb. Externally somewhat shriveled, often with portions of the cortical layer which have not been pared away; usually covered with a bright yellow dust, beneath which it is seen to have a rusty-brown hue; under the lens it is seen to be marked with the medullary rays (innumerable short, broken lines of a deep brown color) crossing a white ground, forming elongated whitish meshes. Well-formed pieces broken transversely display near the cambium zone dark lines arranged as an internal ring of star-like spots, with radiating, reddish medullary rays, marking the internal origin of the leaves. The tissue is made up of a white parenchyma, with reddish-brown or brownish-yellow medullary rays, so twisted, however, as to be scarcely recognizable as such, giving a cross-section a mottled appearance of red, white, and yellow. The white
parenchyma cells are loaded with starch and crystals of calcium oxalate, which cause the grittiness between the teeth; the medullary rays contain the active constituents. Odor characteristics; taste bitter, aromatic, astringent, and gritty. When chewed, it tinges the saliva orange-yellow. It yields a **yellowish powder** with a reddishbrown tinge.

The common pie-plant, Crimean rhubarb, from *Rheum rhaponticum* Linné, is a European variety, having properties similar to that of rhubarb, but the astringent principles predominate. It is fusiform, about
100 mm. (4 in.) long and 20 mm. (4/5 in.) thick, with a thick orange-red cork, partially removed; a **cross-section** shows a comparatively regular, radiate structure of red medullary rays traversing a whitish parenchyma and extending into the cortical layer when present; its odor is less aromatic, is less gritty, and its taste more mucilaginous and astringent. *Rumex hymenosepalus*, Canaigre, has been used, in powder, to adulterate powdered rhubarb. For detection, follow general directions for examination of powders, see Part iv, Chap. I.

Choice of Rhubarb.—Select the moderately heavy and compact pieces, which should break with a brittle fracture, presenting a **lively, mottled appearance of yellowish and reddish fibers intermingled with white parenchyma**; odor decidedly aromatic; taste bitter, astringent, and gritty, not mucilaginous, tingeing the saliva orangeyellow when chewed. Very light, rotten, or worm-eaten pieces should be rejected. The yield of extractive using dilute alcohol should not be less than 30 per cent. The yield of ash should not exceed 13 per cent. It should be stored in air-tight containers with a few drops of chloroform to prevent the development of insects.

Powder. -Characteristic elements: See Part iv, Chap. I, B.

**CONSTITUENTS.**—Seemingly a mixture of different coloring principles of a somewhat resinous quality, each having a peculiar solubility of its own: **Chrysophan**, $C_{27}H_{30}O_{14}$ (and chrysophanic acid), **emodin**, **aporetin**, **phæoretin**, **erythroretin**, **rheumatic acid**, and **rheotannic acid**; also starch, calcium oxalate, pectin, and arabic acid. Chrysophan is a yellow glucoside yielding, with acidulated water, sugar and chrysophanic acid, $C_{15}H_{10}O_{4}$, yellow crystals, one of the best solvents for which is hot benzol. According to Hagar, by proper extraction with chloroformic solvent, etc., rhubarb yields not less than 3 per cent. of chrysophanic acid. Chrysophanic acid, or dioxy-methylanthraquinone ($C_{14}H_{5}CH_{3}(OH)_{2}O_{2}$) is closely related to emodin, which is a trioxy-methyl-anthraquinone ($C_{14}H_{4}CH_{3}(OH)_{3}O_{2}$). **Cathartic acid** represents the cathartic principles of rhubarb in a crude but concentrated form. For its preparation, see Senna (240)

**EMODIN TEST**, in Rhubarb.—Boil 0.100 Gm. of powdered rhubarb with 10 mils of an aqueous solution of potassium hydroxide 1 in 100), allow it to cool, filter, acidulate the filtrate with hydrochloric acid and shake it with 10 mils of ether; on standing, the ethereal layer should be
colored yellow. On shaking this ethereal solution with 5 mils of ammonia water, the latter should be colored cherry-red (presence of emodin) and the ethereal layer should remain yellow (presence of chrysophanic acid)

Preparation of Phæoretin.—Wash alcoholic extract with water; dissolve residue in a little alcohol; add ether. This precipitates crude phæoretin.

Preparation of Chrysophanic Acid.—Tincture of rhubarb, after standing for some time, deposits yellow sedimentary crystals. This sediment, dissolved in benzene, deposits the principle on evaporation.

Chrysarobin is a principle easily converted into chrysophanic acid by oxidation. The source of this is Goa powder (from Andira araroba). The powder is extracted with hot benzene (benzol), and the liquid allowed to cool. The orange-colored principle separates as the liquid cools.

ACTION AND USES.—Purgative and astringent. It has been highly esteemed as an antidysenteric remedy because of the fact that the cathartic principles are accompanied by the antiseptic action of chrysophan, and because catharsis is followed by an astringent and tonic effect upon the mucous lining. Roasting destroys the cathartic quality, when the root becomes simply a bitter astringent. Dose: 15 to 30 gr. (1 to 2 Gm.).

Official Preparations.

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Composition</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tinctura Rhei</td>
<td>20 per cent., with cardamom</td>
<td>1 to 4 fl. dr. (4 to 15 mils)</td>
</tr>
<tr>
<td>Tinctura Rhei Aromatica</td>
<td>20 per cent., with cassia cinnamon, cloves, and nutmeg</td>
<td>½ to 3 fl. dr. (2 to 12 mils)</td>
</tr>
<tr>
<td>Syrupus Rhei Aromaticus</td>
<td>15 per cent. of aromatic tincture</td>
<td>2 to 6 fl. dr. (8 to 24 mils)</td>
</tr>
<tr>
<td>Fluidextractum Rhei</td>
<td></td>
<td>5 to 30 ml (0.3 to 2 mils)</td>
</tr>
<tr>
<td>Mistura Rhei et Soda</td>
<td>1.5 per cent. with sodium bicarbonate, fl'ext. of ipecac, and spirit peppermint</td>
<td>2 to 6 fl. dr. (8 to 24 mils)</td>
</tr>
<tr>
<td>Syrupus Rhei</td>
<td>Fl'ext. 10 per cent.</td>
<td>5 to 15 gr. (0.3 to 1 Gm.)</td>
</tr>
<tr>
<td>Extractum Rhei</td>
<td></td>
<td>1 to 3 dr. (4 to 12 Gm.)</td>
</tr>
<tr>
<td>Pulvis Rhei Compositus</td>
<td>25 per cent., with magnesia and ginger</td>
<td></td>
</tr>
<tr>
<td>Pilulae Rhei Compositae</td>
<td>(each pill containing about 2 gr. of rhubarb, with purified aloe 1½ gr., myrrh, and oil of peppermint)</td>
<td>1 to 3 pills</td>
</tr>
</tbody>
</table>

121. RUMEX, N.P.—YELLOW DOCK. The root of Ru'mex cris'pus Linné, and of some other species of Rumex. Off. in U.S.P. 1890 A fusiform root from 100 to 200 Mm- (4 to 8 in.) long and 10 to 15 Mm- (2/5 to 3/5 in.) thick; externally reddish-

Sayre's Materia Medica part II - Page 7
brown, the upper portion annulate, the lower portion wrinkled; fracture short, exhibiting a rather thick cortical layer and a yellowish or whitish interior, somewhat mottled, the rather porous and horny wood-wedges separated by fine, distinct, reddish medullary rays; inodorous; taste astringent and bitter. Alterative, tonic, and astringent. Dose: 15 to 60 gr. (1 to 4 Gm.). Extractum Rumicis Fluidum, U.S.P. 1890. Dose: 15 to 60 drops (1 to 4 mils).

122. CANAIGRE.—The root of Ru'xex hymenosep'alus Torrey, from which a tannin is obtained. This plant resembles common dock, Rumex crispus, and flourishes in dry, barren, sandy soil in Southwestern United States and Mexico. It propagates by means of the roots, which grow in clusters of three or four. They are from 50 to 150 mm. (2 to 6 in.) long, and 25 to 50 mm. (1 to 2 in.) thick, reddish-brown to almost black. A cross-section shows a prominent cambium line and a broad radiating center. The tissue is chiefly parenchyma, containing starch, tannin, and a yellowish-red coloring matter. The tannin is yellowish-white, identical with that of rhubarb (rheotannic acid).

123. POLYGONUM ACRE.—WATER PEPPER. SMART WEED. (Herb.) Stimulant, diuretic, and emmenagogue. Dose: 1 to 2 dr. (4 to 8 Gm.).

124. BISTORTA.—BISTORT. The rhizome of Poly'gonum bistor'ta Linné. Habitat: Europe, Northern Asia, and Northwestern United States, in moist places. An $S$-shaped rhizome (bent upon itself—bistorted), flattened, and transversely striate on upper side, and convex, with depressed rootscars, on lower side; color dark reddish-brown, internally lighter; fracture smoothish, showing a thick bark and a pith of about the same thickness as the bark. Contains tannin, 20 per cent., and starch, with red coloring matter. Tonic and astringent. Dose: 8 to 30 gr. (0.5 to 2 Gm.), in decoction.

**CHENOPODIACEÆ.-Goosefoot Family**

Weed-like herbs, with minute greenish flowers; ovary 2-styled, 1-celled, becoming a 1-seeded thin utricle or caryopsis. Generally bland and innocent.

125. CHENOPODIUM.—AMERICAN WORMSEED. The fruit of Chenopo'dium ambro'sioi'des Linné, and variety anthelmint'icum Gray. Off. U.S.P. 1890 A small, irregularly globular, seed-like fruit (utricle) not larger than a pin-head and of a grayish-yellow or brownish color. By rubbing the minute grains (fruit) in the hands, the capsular covering to the seeds is broken off, when the shining, lenticular, blackish seeds appear and a peculiar, strong, terebinthinate odor is rendered sensible. Taste pungent and bitter. The variety Anthelminticum gives a similar fruit, but is more aromatic. Constituents: Its medical properties depend upon a volatile oil, 3.5 per cent. (125a), in which it, as well as all the other parts of the plant, abounds. Anthelmintic. Dose; 15 to 30 gr. (1 to 2 Gm.).

125a. OLEUM CHENOPODII, U.S.—OIL OF CHENOPODIUM. A thin, yellowish, volatile oil, turning darker or brownish by age, having the peculiar odor and taste of the fruit. It is composed of a hydrocarbon and a heavier oil. Dose: 4 to 8 drops (0.25 to 0.50 mil).

Sayre's Materia Medica part II - Page 8
PHYTOLACCACEÆ.-Pokeweed Family

Tropical plants represented in the United States by Phytolacca decandra and Rivinia, lævis.

126. PHYTOLACCA, N.F.—POKE ROOT

The dried root of Phytolac'ca decan'dra Linné, collected in autumn.

BOTANICAL CHARACTERISTICS.—Stem red, 3 to 8 feet high, smooth, with an unpleasant odor. Leaves large, petiolate, alternate, ovate-lanceolate, entire, cuspidate. Racemes lateral, opposite the leaves; calyx (perianth) white, lobes ovate, rounded at the apex; ovary bright green, berries dark purplishred, pulpy.

HABITAT.—North America; naturalized in West Indies and Southern Europe.

DESCRIPTION OF DRUG.—A large root, often 25 to 75 mm. (1 to 3 in.) in diameter, but cut into various sized transverse or longitudinal slices for drying and for the market; externally yellowish-brown, much wrinkled; internally grayish, turning yellow on exposure. Structure loosely fibrous, almost ligneous, alternating with dark, circular layers; a transverse slice shows on its face numerous concentric circles formed by the projecting ends of fibers between which the intervening parenchyma has shrunk; odor slight; taste sweetish, then acrid.

CONSTITUENTS.—Resin, tannin, starch, gum, sugar, fixed oil, salts, and probably a glucoside. A trace of alkaloid is reported, but the writer has found alkaloidal reaction quite pronounced in concentrated and purified solutions of the drug. Its virtues are imparted to water and alcohol.

ACTION AND USES.—Alterative, emetic, cathartic. It is not suitable for a cathartic however, because of the narcotic effect often produced. Its most important use is as an alterative in chronic rheumatism, etc., and externally, in the form of ointment, in

Sayre's Materia Medica part II - Page 9
various skin diseases. Dose: 3 to 30 gr. (0.2 to 2 Gm.). Emetic in the larger dose.

**Fluidextractum Phytolaccae** (U.S.P. 1900), Dose: Emetic, 1.0 mil (15 drops.)
Alterative 0.2 mil (3 drops).

127. **PHYTOLACCAE FRUCTUS.**—POKE-BERRIES. Globular, purplish or black, berry-like fruits, about 8 mm. (1/3 in.) or less in diameter, adhering together in masses from the exudation and drying of a purplish-red juice. Ten-celled, each containing a single glossy black seed imbedded in a succulent pulp. Inodorous; taste sweetish, slightly acrid, and nauseous. Constituents: *Phytolaccin, phytolaccic acid*, tannin, sugar, gum, and an evanescent coloring matter, turned yellow by alkalies and bleached by sunlight.

**CARYOPHYLLEÆ.**—Pink Family

Herbs with swollen joints, opposite, entire, and regular flowers; petals 4 or 5 mostly removed from the calyx by a short internode. Usually bland herbs; some are highly valued as ornamental plants.

128. **SAPONARIA LEVANTICA.**—LEVANT SOAPWORT. The root of *Gyp'sophila paniculata* Linné. Habitat: Italy to Asia Minor. A simple, fusiform root, longitudinally wrinkled, and marked with transverse ridges; used in washing silks and other fabrics. It contains sapotoxin (8.5 per cent.), and the acrid glucoside saponin, yielding by hydrolysis sapogenin, which is used as a detergent.

129. **SAPONARIA.**—SOAPWORT. *Saponaria officinalis* Linné. An acrid root, found in Europe and the United States; contains resin, and the glucoside; saponin. The latter is a white powder, soluble in hot water and alcohol, its solution when shaken foams like soap-water. When treated with acids it is split into sugar and a crystallizable principle, sapogenin, soluble in water. Used as an alterative in doses of 15 to 60 gr. (1 to 4 Gm.).

130. **STELLARIA.**—CHICKWEED. The herb of *Stellaria media* Smith. Demulcent and emollient; a poultice is used in ophthalmia, bruises, inflammation, etc.

**PORTULACEÆ.**—Purslane Family

131. **PORTULACA.**—GARDEN PURSLANE. The herb of *Portulaca oleracea* Linné. Refrigerant and mild efficient diuretic in ascites; it has a beneficial action in catarrhal affections of the genito-urinary tract, Dose: 1 to 3 dr. (4 to 12 Gm.).

**NYMPHÆÆ.**—Water Lily Family

Aquatic plants, with peltate or cordate leaves from a prostrate rhizome.

132. **NYMPHAEA.**—WATER LILY. The rhizome of *Nymphaea odora* Aiton. Habitat: United States, in ponds. About 500 mm. (20 in.) long and 50 mm. (2 in.) thick, usually broken up into grayish, spongy segments, consisting mainly of
parenchyma, with a few scattered wood-bundles. Inodorous; taste mucilaginous and astringent. Used as a demulcent and astringent. Dose: 15 to 30 gr. (1 to 2 Gm.).

The rhizome of *Nu'phar ad'vena* Nuttall, Yellow Pond Lily, has similar properties and uses.

**RANUNCULACEÆ.--Crowfoot Family**

Herbaceous or somewhat shrubby plants with acrid juice; distinguished by the parts of the flower-sepals, petals, stamens, and pistils—being free and distinct—that is, separated and independently situated on the receptacle. The leaves are dilated at base, one-half clasping the stem. Fruit a pointed or feathery akene, dry pod, or berry. The order has numerous anomalies in the form and structure of the calyx, and corolla in such genera as columbine, aconite, larkspur, ranunculus, anemone, etc., which, nevertheless, agree in the separation of their sepals and petals, the insertion of their numerous stamens, direction of their anthers, structure of seed, etc.
133. CIMICIFUGA.—CIMICIFUGA
BLACK SNAKEROOT. BLACK COHOSH

The dry rhizome and roots of Cimicifuga racemosa Nuttall.

BOTANICAL CHARACTERISTICS.—Stem 4 to 8 feet high, from a thick rhizome; leaves alternate, ternately decompound; flowers regular, small, white, in wandlike racemes often 3 feet long; sepals 5, petaloid; petals from 1 to 8, small, on claws, 2-horned at apex; stamens numerous; pistils 1 to 3; fruit 1 to several dry, dehiscent pods.

SOURCE.—This plant is common in rich woodlands of the United States, westward to Iowa and northward to Canada. Actæ'a racemo'sa is mentioned by Flückiger as a synonym of this plant. A similar plant, Actæ'a spicat'a, furnishing a rhizome resembling black snakeroot, is common in Europe; it differs, however, in having juicy berries instead of dry follicles.

DESCRIPTION OF DRUG.—A short horizontal rhizome from 10 to 25 mm (2/5 to 1 in.) thick, with numerous branches—remains of aerial stems —each terminated by a deep cup-shaped scar; on the lower side are found numerous brittle rootlets from 1 to 2 mm. (1/25 to 1/12 in.) thick; externally brownish-black; fracture of rhizome, horny; odor slight (the powder, however, has a heavy odor); taste bitter and acrid.
Cross-section of the rhizome exhibits a large, whitish pith, around which, more or less stellately arranged, are wood-wedges separated by medullary rays. Bark hard and thickish. The rootlets display, under the microscope, a thick cortical layer, the space within which contains converging wedges of open, woody tissue, three to five in number, forming a Maltese cross. The stellate arrangement of the woody wedges of the rootlets is one of the best distinguishing characteristics.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Besides the ordinary vegetable principles-fat, sugar, tannin, and starch—there exists a resin which has been by some assigned as the active medicinal constituent. This resin, amounting to about 3 1/2 per cent., is contained in the resinoid cimicifugin or macrotin of the market. An acrid, crystalline principle, soluble in chloroform, ether, and alcohol, and not precipitated by lead acetate, is also said to exist in the root. Ash, not more than 10 per cent.

Preparation of Cimicifugin.—By precipitating the concentrated tincture with water, a crude article is prepared which is known as the resinoid. A purer form is made by precipitating the tincture of the fresh drug with lead subacetate, removing the lead from solution with H₂S, and evaporating. Soluble in alcohol and chloroform.

ACTION AND USES.—Antispasmodic, diaphoretic, and expectorant. It
acts like digitalis on the circulation, and as a sedative upon cardiac
ganglia; small doses stimulate digestion and secretion; used in
rheumatism and disturbances of the menstrual function. It is a powerful
uterine stimulant. In large doses cimicifuga causes nausea, headache,
vertigo, tremors, muscular relaxation, slowing and weakening of the
pulse. Dose: 15 to 30 gr. (1 to 2 Gm.).

OFFICIAL PREPARATIONS.

Fluidextractum Cimicifugæ  Dose: 5 to 30 drops (0.3 to 2 mils).
Extractum Cimicifugæ Dose: 3 to 5 gr. (0.2 to 0.3 Gm.).

134. HYDRASTIS.—HYDRASTIS
GOLDEN SEAL. YELLOW PUCCOON

The dried rhizome and roots of Hydrastis canadensis Linné. Yielding not less than
2.5 per cent. of ether soluble alkaloids of Hydrastis,

BOTANICAL CHARACTERISTICS.—Plant about 8 inches high, from a thick,
knotty rhizome. The single radical leaf simple, 5-lobed; stem 2-leaved at summit;
flowers terminal, single, greenish; calyx of 3-petaloid sepals, regular; fruit a head of 1-
2-ovuled berries.

SOURCE.—The area of the country over which hydrastis grows in
sufficient abundance to be a commercial source of the drug is embraced
in Ohio, Indiana, Kentucky, Michigan, and West Virginia. It is also
found in other portions of the Eastern United States. Large quantities of
the drug are now being cultivated. One of the fields the writer has
visited, is located in Douglas, Michigan, “Seal Growers,” as they are
called, have a cooperative Society to promote their interests. in the
growing of this plant and ginseng, especially.

DESCRIPTION OF DRUG.—A knotty, contorted rhizome about 40 mm.
(1\$5 in.) long and 5 mm. (1/5 in.) thick; on the upper side are several
scars which mark the positions and detachment of former herbaceous
stems; these scars (cup-like projections) have given rise to the name
“golden seal.” Externally rough, of a dull yellowish-brown color,
annulate, and beset with numerous slender rootlets; internally of a
lemon-yellow color; breaks with a short, resinous fracture; a cross-
section shows a thick bark, narrow wood-wedges, and broad medullary
rays which radiate from a large pith. The rootlets show a woody center
surrounded by a thick parenchymatous cortical tissue which is bordered
by an outer row of compressed cells; odor distinct; taste bitter. Two to
three hundred thousand pounds of the drug are annually consumed.
CONSTITUENTS.—The two alkaloids, hydastine, $C_{21}H_{21}NO_6$ (colorless and slightly acrid), and berberine (yellow and intensely bitter), are the principal constituents. Berberine, $C_{20}H_{17}NO_4$, is very widely distributed in nature, being found in drugs from several different families of plants. Hydastine, when pure, is in perfectly colorless, very brilliant, glassy crystals. As a rule, however, they are white and opaque, owing to the presence of numerous fractures. The yellow color of berberine adheres very tenaciously to the hydastine, so that the absolutely colorless hydastine is difficult to obtain. Canadine,
C$_{20}$H$_{21}$NO$_4$, tetrahydroberberine, the sulphate of which is soluble in water and alcohol. **The resinoid, hydrastin, should not be confounded with the active alkaloid.** This resinoid is made by precipitating a concentrated alcoholic tincture of hydrastis with acidulated water, and is probably, in the main, an impure muriate of berberine. Hydrastin, which Falk regards as a valuable remedy, is made by decomposing the alkaloid, hydrastine, with dilute nitric acid and gentle heat, when opianic acid is also formed.

Preparation of Hydrastine—Pereolate drug with water; precipitate berberine by adding HCl; to filtrate add ammonia in excess. The impure hydrastine which then deposits is dissolved in alcohol, filtered through charcoal, and crystallized.

Preparation of Berberine—(Obtained also from Berberis vulgaris and allied drugs.) Exhaust powdered root with boiling water, evaporating to soft extract; exhaust this with alcohol; add water. Distil off alcohol; add H$_2$SO$_4$ in excess, when berberine sulphate crystallizes in yellow needles.

**ACTION AND USES.**—Until the introduction of the white alkaloid hydrastine, the drug was used almost exclusively as a local astringent; but of late years, since the many physiological experiments with this alkaloid, it has been used internally in chronic inflammations of the mucous membrane. Hydrastis is now quite largely employed in the treatment of depraved mucous membranes, as, for example, in chronic rhinitis, the atonic stomach of drunkards, chronic intestinal catarrh, catarrhal jaundice, vaginal leucorrhoea, and the later stages of gonorrhea. It has been recommended in the treatment of uterine hemorrhages resulting from endometritis, and is said to act well in cases in which Ergot has proved useless.
In dyspepsia it has been used as a stomachic stimulant, and has received praise in the vomiting of pregnancy. Dose: 30 gr. (2 Gm.). Hydrastine is said to have antiperiodic properties and is given in doses of 1/32 gr. (0.002 Gm.).

OFFICIAL PREPARATIONS.

- **Extractum Hydrastis** Dose: 8 gr. (0.5 Gm.).
- **Fluidextractum Hydrastis** Dose: 5 to 30 drops (0.3 to 2 Milis).
- **Tinctura Hydrastis** (20 per cent.) Dose: 10 to 60 drops (0.6 to 4 mils).
- **Glyceritum Hydrastis** (each mil contains 1 Gm. of drug). Used externally.

135. **ACTÆA ALBA**.—WHITE COHOSH. The rhizome of *Actaea alba* Bigelow. Habitat: Southern and Eastern United States. Often found in the European market mixed with black hellebore; its appearance, however, is more like cimicifuga. Violent purgative, irritant, and emetic.


137. **HELLEBORUS NIGER**.—BLACK HELLEBORE. The rhizome and roots of *Helleborus niger* Linné. Habitat: Central and Southern Europe. Irregular and knotty; externally brown-black; internally grayish, with a thick bark; taste sweetish, bitter, and acrid; odor slight, peculiar. Poisonous; anthelmintic, drastic cathartic, and emmenagogue. Dose: 5 to 20 gr. (0.3 to 1.3 Gm.).

138. **HELLEBORUS VIRIDIS**.—GREEN HELLEBORE. The rhizome and roots of *Helleborus viridis* Linné. This resembles above, but is smaller. Used as a diuretic, cathartic, and emmenagogue. Dose: 5 to 20 gr. (0.3 to 1.3 Gm.). It should not be confounded with veratum viride (also called green hellebore), a cardiac and nervous sedative.

139. **XANTHORRHIZA**.—YELLOW-ROOT. The rhizome of *Xanthorrhiza apiifolia* L'Heritier. Habitat: Southern and Central United States. About 500 to 1,000 mm. (20 to 40 in.) long, and 10 mm. (2/5 in.) thick; externally of a bright yellowish-brown color; internally yellow; inodorous and bitter. Contains berberine, the alkaline base of berberis vulgaris; it is a matter of record that in many, perhaps most, berberine-yielding plants, a colorless alkaloid accompanies berberine, but, according to Lloyd, a second alkaloid does not exist in this drug. Used as a tonic. Dose: 1/2 to 1 dr. (2 to 4 Gm.).

140. **PULSATILLA**, N.F.—PASQUE FLOWER. The herb of *Anemone pulsatilla* and of *Anemone praten'sis* Linné, collected soon after flowering. Off. U.S.P. 1890. The drug never comes into the market in a condition in which the leaf or other parts are readily recognizable, as they are most always broken or compressed. The U.S.P.
1890, directed that the herb should be carefully preserved, and not kept longer than one year. Even the drying of the plant is said to render the drug unreliable. Constituents: A peculiar acrid crystallizable principle exists in the plant known as anemonin (C$_{10}$H$_{8}$O$_{4}$) an acrid, unstable principle not well understood. Some authorities state that it undergoes decomposition after its solution, under conditions that are not precisely known, into anemonic acid (C$_{10}$H$_{10}$O$_{5}$) and anemoninic acid (C$_{10}$H$_{18}$O$_{6}$), etc.; others state that it is a volatile, fluid, acrid principle, very susceptible of decomposition.

Preparation of Anemonin.—If aqueous distillate be treated with chloroform, the latter, on evaporation, yields a residue-anemonin. Dose: $1\frac{1}{2}$ to 3 gr. (0.1 to 0.2 gm.).
Diuretic, diaphoretic, mydriatic, irritant. The action of pulsatilla is said to resemble aconite as a cardiac sedative. One author says it is equivalent to senega in convulsive coughs and in bronchitis. The recent tincture, in 5-drop doses (made according to the formula of the tincture of recent herbs, U.S.P. 1890, is highly esteemed by some practitioners. The drug is not infrequently classed among the most useful emmenagogues. Dose: 1 to 5 gr. (0.065 to 0.3 Gm.).

141. ADONIS VERNALIS, N.F.—FALSE. HELLEBORE. The herb of Adonis vernalis Linné. This rather obscure drug owes its poisonous quality and medicinal activity to a glucoside, adonidin, whose physiological action seems to be almost identical with that of digitalin, except that it is more powerful, and not cumulative. Like digitalis, it is used in heart disease and dropsy, slowing the heart's action, and making it more regular and forcible; it greatly increases urinary secretion. Dose: 2 to 10 gr. (0.12 to 0.6 Gm.), in infusion.

142. Ranunculus.—CROWFOOT. BUTTER CUP. The herb of Ranunculus bulbosus Linné. Habitat: Europe and North America. Base of stem thick; flowers yellow, the ovaries of which form akenes with a short, curved beak; inodorous, with acrid taste. Used externally as an irritant.

143. STAPHISAGRIA.—STAPHISAGRIA

STAVESACRE

The ripe seed of Delphinium staphisagria Linné.

BOTANICAL CHARACTERISTICS.—Stem 3 to 4 feet high, erect, more or less colored purple; leaves long petiolate, alternate, palmately 5-9-divided, blotched with purple; flowers in loose spoke-like racemes, varying from light-blue to purple; irregular; sepals 5, petaloid, upper one prolonged into a spur; petals 4, small; fruit 3, hairy follicles.

SOURCE.—This herb is a native of Italy, Greece, the Greek Islands, Asia Minor, Mediterranean regions, and Canary Islands. It was introduced into England in 1596.

DESCRIPTION OF DRUG.—About 5 mm. (\(\frac{1}{5}\) in.) long, 3 to 4 mm. (\(\frac{1}{9}\) to \(\frac{1}{6}\) in.) thick; externally flattish, tetrahedral, the broadest side convex; testa brownish, with reticulate ridges, rough and deeply pitted; internally it contains a whitish, oily albumen, inclosing a small, straight embryo in its sharper end. The outer layer of the testa is made up of thin-walled, narrow cells, which become larger near the edges of the seed and in the superficial wrinkles. They contain a small number of minute starch granules. The interior layer exhibits a single layer of small, densely-packed cells. The albumen is composed of the usual tissue.
loaded with granules of albuminoid matter and drops of fatty oil. Nearly inodorous; taste bitter and astringent. Dose 1 gr, (0.06 Gm.).

Powder.—Dark greenish. Characteristic elements: The angular cells of the parenchyma of the endosperm with aleurone and oil globules; very large epidermal cells, brown, thick-walled, with irregular thickenings.

CONSTITUENTS.—Resides fixed oil, etc., one of the most prominent constituents is a poisonous alkaloid, delphinine, which exists in the form of a malate. This alkaloid, however, is said to be composed of several distinct principles. Marquis has separated four distinct alkaloids from the seed.
Preparation of Delphinine.—Treat the decoction with magnesia, exhaust the precipitate with alcohol, and evaporate. The crude alkaloid thus obtained consists of three distinct principles—resin, staphisagrine, and delphinine. Pure delphinine is soluble in alcohol and ether.

ACTION AND USES.—Stavesacre is mostly used as a parasiticide to destroy vermin, especially against pediculi vestimentorum—inhabiting the garments next to the skin. A tincture in cologne spirit has been used in some districts as a substitute for tincture of cocculus indicus, applied to the scalp as an antiparasitic. Internally, the action resembles aconite in its effects upon the heart and respiration. Dose: 1 to 2 gr. (0.065 to 0.130 Gm.). Poisonous doses are rapidly diffused, and antidotal measures should be rapidly applied. (Fluidextractum staphisagriæ, used externally as a parasiticide.)

144. DELPHINIUM, N.P.—LARKSPUR SEED. The seed of Delphinium consolida Linné. Habitat: Central Europe; cultivated and naturalized in some parts of the United States. A flattish, tetrahedral seed, 1 to 1.5 mm. (1/25—1/16 in.) broad; edges sharp, testa black and roughly pitted; internally, it consists of whitish, oily albumen, inclosing a small, straight embryo; inodorous; taste bitter and acrid; contains delphinine. Used as a diuretic, cathartic, and emetic; poisonous. Dose: 1/2 to 3 gr. (0.03 to 0.2 Gm.).

145. NIGELLA.—NIGELLA. The seeds of Nigella damascena Linné. Habitat: Levant; cultivated. Triangular-ovate, about 2.5 mm. (1/10 in.) long; testa brittle, dull-black; embryo straight and small, with pointed ends. It has a strawberry-like odor, and bitter taste. Used as an emmenagogue and diuretic.

146. ACONITUM.—ACONITE MONKSHOOD

The dried tuberous root of Aconitum napellus Linné. Yielding, by official assay, not less than 0.5 per cent. of ether soluble alkaloids, also assayed biologically.

The minimum lethal dose of fluidextract should not be greater than 0.00004 mil for each gramme of body weight of guinea-pig.

BOTANICAL CHARACTERISTICS.—Stem 3 to 4 feet high, smooth and erect; leaves nearly sessile, alternate, palmately 5-divided; root-leaves long-petioled; flowers deep violet, irregular, very showy, in racemes; sepals 5, petaloid, the upper one hooded or helmet-shaped; petals 2, concealed.
SOURCE AND VARIETIES.—This genus of poisonous herbs, including a number of species, is found throughout cold, mountainous districts of Europe, in the Himalayas, and in Northwestern North America. It is one of the oldest and commonest plants of the English garden, and is often found in dangerous proximity to horseradish (Royle). Hindu writers mention no less than eighteen different kinds of “bish”—the vernacular for aconite. Ten of these are said to be unfit for medicinal use on account of their extremely poisonous nature. The root (tuber) of A. napellus is the source of the medicinal preparations of this drug. Nepaul aconite is the source of the extremely active alkaloid, pseudaconitine (see below).
A. fischeri produces Japanese aconite root. It yields japaconitine, stated to be identical with aconitine.

DESCRIPTION OF DRUG.—Almost napiform, abruptly tapering, from 40 to 100 mm. long, about the thickness of a finger at the top, which is tuberculated; externally dark-brown, wrinkled longitudinally at lower portion, stem scars visible, rootlets usually detached; fracture short, horny or starchy, exhibiting sometimes a spongy or resinous, white, grayish, or brownish tissue; taste at first sweetish, then acrid and tingling, followed by numbness. This peculiar tingling sensation of the tongue is one of the most prominent characteristics upon which the toxicologist depends for the recognition of this drug and its preparations. At the upper portion of the root there of ten projects a lateral branch connecting a second tuber, which is an offspring of the other. A cross-section of the tuber shows a thick bark and a pith often in the form of a star, the two being separated by a nucleus sheath; the cambium, following the outline of the pith, is also 5- to 7-angled, and at the terminal and basal extremities of each ray are found small groups of vascular bundles; these, however, are inclined to follow the whole cambium line.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.
ADULTERANTS.—With allied aconite roots, defective roots, and horseradish. The root of European masterwort resembles aconite root, but it is aromatic and pungent.

CONSTITUENTS.—The principal constituent is aconitine, $C_{34}H_{47}NO_{11}$ (0.5 per cent.), forming about one-third the total alkaloid of the root. This is white, usually amorphous, but with difficulty may be obtained in rhombic, tabular crystals; almost insoluble in cold water, soluble in alcohol, ether, and diluted acids. Other related principles exist in the drug combined with aconitic acid ($H_3C_6H_3O_6$), but our knowledge of them is not satisfactory. The crystallized alkaloid melts at 189º to 190ºC., and yields acetic acid at slightly higher temperature.

Pseudaconitine, $C_{36}H_{49}NO_{12}$, from Aconitum ferox, is highly poisonous. Atisine, $C_{22}H_{31}NO_2$ (from Aconitum heterophyllum), does not present any close analogy to the alkaloids of the other and well-known species of aconite (A. napellus, A. ferox, and A. japonicum). In small doses it is said to be non-toxic, but its action, according to some reports, resembles that of aconite.

Commercial aconitine contains some of the allied principles, which are
separated from the alkaloid with difficulty. Ash, not exceeding 6 per cent.

Preparation of Aconitine.—After extracting oil and resin by a suitable solvent, an alcoholic extract is made which is treated with hot water. The aqueous solution is precipitated by adding NH₄OH in excess. This precipitate is exhausted with ether-ethereal solution distilled to dryness. Purify residue by dissolving in acidulated (H₂SO₄) water, again precipitating with NH₄OH, etc. This process yields a commercial product which is not free from pseudoaconitine.

ACTION AND USES.—Antipyretic to a certain extent by reducing circulation; depressant of the sensory nerve-ends, the heart, the respiration, and spinal system. It relaxes the inhibitory apparatus of the heart, and paralyzes the cardiac muscle and its contained ganglia, the respiratory centers, and the spinal cord in all its functions-sensory, reflex, and motor—but does not affect the cerebrum. Murrell has called attention to the fact that the English alkaloid is seventeen times stronger than the German, while the French is variable, but generally between these; the crystalline variety (Duquesnel's or Merck's aconitine) is therefore to be preferred on account of its uniform strength. The dose of the commercial aconitine is 1/64 gr.; the crystallized alkaloid, however, is given in doses of only from 1/300 to 1/250 gr.

Dose of drug: 1 gr. (0.06 Gm.).

OFFICIAL PREPARATIONS.

Fluidextractum Aconiti, Dose: 1/4 to 2 drops (0.015 to 0.12 mil).
Extractum Aconiti Dose: 1/6 to 1/3 gr. (0.010 to 0.02 Gm.).
Tinctura Aconiti (10 per cent.) Dose: 1/2 to 4 drops (0.03 to 0.25 mil).

147. HEPATICA.—LIVERWORT. The leaves of Anem'one hepatica Linné. Habitat: North America and Europe. Heart-shaped, about 50 mm. (2 in.) long, slightly leathery; inodorous; astringent and bitter. The more correct synonym for this plant is liverleaf, as the term liverwort is applied to a family of cryptogamic, moss-like plants—Hepaticæ. Used as a demulcent and tonic. Dose: 1/2 to 2 dr. (2 to 8 Gm.) in decoction.

148. PÆONIA.—PEONY. The root of Pæonia officinalis Linné. Seldom used, although at one time a popular remedy in epilepsy, diarrhea, and as an emmenagogue. Occasionally used in chorea, whooping-cough, etc. Dose: 15 to 60 gr. (1 to 4 Gm.), in infusion.
MAGNOLIACEÆ.—Magnolia Family

Trees and shrubs, mostly of subtropical regions. Leaves coriaceous; alternate, simple, usually pellucid-punctate, entire, or rarely dentate; flowers axillary or terminal, usually solitary, perfect, or, in a few genera, unisexual; sepals, petals, stamens, and pistils numerous and hypogynous. Fruit various, cone-like, or forming a stellate group of whorl (illicium), or capsular with ventral or dorsal dehiscence.

Synopsis of Drugs from the Magnoliaceæ

A. Fruit.
   Illicium, 149.

B. Barks.
   Magnolia, 150.
   Wintera, 151.
   Liriodendron, 152.

Fig. 79.—Illicium verum—Flowering branch and fruit.
149. **Illicium**.—STAR ANISE. The dry fruit of *Illicium ve'rum* Hooker filius. Off. U.S.P. 1890. The fruit is pedunculate, and consists of light, stellately arranged, one-seeded carpels, which are boat-shaped and united around a short central column rising from an oblique pedicle. Each carpel is 12 or 15 mm. (1/2 to 3/5 in.) long, woody, wrinkled, with a straight beak; rusty-brown in color, and split at the ventral suture, exposing the flattish, bright, glossy-brown, oval seed; odor intermediate between fennel and anise; taste (residing in the carpel,) aromatic and sweet; seed not aromatic, but oily. Adulterated with *Illicium religiosum* Siebold (found growing around Buddhist temples in southwest China, whence its name), a poisonous plant cultivated in China and Japan, which resembles it in appearance, but is more woody, has a curved beak, a clove-like odor, and a disagreeable taste.

**Constituents:** A volatile oil resembling the oil of pimpinella anise. The former oil is solidified at 35ºC., and the latter between 50º and 60ºC., almost entirely composed of anethol (C₁₀H₁₂O), with small amounts of terpenes, safrol, anisic acid, etc.

It has stimulant, anodyne, diuretic, and carminative properties which reside exclusively in the volatile oil. Dose: 5 to 30 gr. (0.3 to 2 Gm.).

150. **MAGNOLIA**.—MAGNOLIA. The bark of *Magnolia glau'ca* Linné. Habitat: Middle and Southern United States. A thin-quilled bark of a gray color, or sometimes light brown, fissured, and covered with numerous scattered warts; the inner surface smooth and of a light brown color; fracture short, toward the inner portion somewhat fibrous; nearly inodorous, with a bitter, spicy, and pungent taste. It contains a volatile oil, resin, tannin, coloring matters, gum, and a crystalline glucoside, magnolin. Used as a diaphoretic, tonic, and febrifuge. Dose: 10 to 80 gr. (2 to 4 Gm.) in decoction.

151. **WINTERA**.—WINTER'S BARK. From *Dri'mys winte'ri* Forster, a South American tree. It has an aroma similar to that of canella and cinnamon, for which drugs it has been substituted, and is known in some places as Winter's Cinnamon. The bark of Drimysgranatensis from New Granada is said to have been offered as Coto bark. It also has an astringent, pungent, as well as aromatic taste. Dose: 15 to 30 gr. (1 to 2 Gm.).
inodorous; taste pungent and bitter. Tonic, febrifuge and vermifuge. Dose: 1 to 2 dr. (4 to 8 Gm.) in infusion or fluid extract.

Preparation of Liriodendrin.—Concentrate the alcoholic tincture; add water until a permanent turbidity commences to appear. Set aside to evaporate spontaneously. It forms, when purified, white needles or small scales. Insoluble in water, soluble in ether and alcohol.

CALYCANTHACEÆ.—Calycanthus Family

153. CALYCANTHUS.—FLORIDA ALLSPICE. The bark of Calycanthus flor'idus. An aromatic stimulant, used in diarrhea mixtures. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

MYRISTICACEÆ

A. Seed. MYRISTICA, 154.
B. Volatile Oil. OLEUM MYRISTICÆ, 154 a.
C. Fixed Oil. Oleum Myristicae Expressum, 154 b.

154. MYRISTICA.—NUTMEG

NUTMEG

The kernel of the ripe seed of Myristica frag'rans Houttuyn.

BOTANICAL CHARACTERISTICS.—Tree about 30 feet high. Leaves oblong-oval, entire, glossy above, whitish beneath, aromatic. Flowers dioecious; male flowers in axillary clusters; female flowers single, solitary, and axillary, both very small and of a pale yellow color.

HABITAT.—Molucca Islands; cultivated in adjacent East India islands, and especially in the Dutch Banda Islands, whence most of the nutmegs are imported for market.

DESCRIPTION OF DRUG.—A roundish or oval kernel about 25 mm. (1 in.) long; externally light grayish-brown, marked with worm-shaped furrows and covered with lime (done by the Dutch growers to kill the germ, thinking in this way to monopolize its cultivation). They are hard and not readily pulverizable, but can easily be cut or grated, showing a waxy luster; internally yellowish, a cross-section having a mottled appearance, due to the penetration to the albumen of the inner seed-coat in narrow brown strips; these strips contain oily material; hilum and micropyle on the broad end, chalaza near the upper
end, united by a groove corresponding to the raphé; the embryo is small, in a cavity at the base; **odor** strongly aromatic; **taste** warm and aromatic.

The male, wild, or long nutmeg, as it is variously termed, is occasionally found in market- it is much longer than the official nutmeg, elliptical, destitute of the dark brown inner veins, and of a bitter and disagreeable taste. Penang and Singapore nutmegs are unlimed.

*Sayre's Materia Medica part II - Page 29*
California nutmeg, so called, is the seed of Torrega Californica (nat. ord. Coniferae); testa smooth, brownish, internally marbled, resembling nutmeg, but has a terebinthinate odor and taste.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—The greater portion of nutmeg (25 to 30 per cent.) consists of a fixed oil; this is official in the British Pharmacopoeia and is called oil of mace or mace butter; it contains chiefly myristin, with some myristic acid, olein, palmitin, resin, and volatile oil (see 154 b). The aromatic properties of nutmeg depend upon 2 to 8 per cent. of volatile oil. Ash, not exceeding 5 per cent.

ACTION AND USES.—Aromatic stimulant and stomachic. Used as a corrective and as a condiment. In large doses it possesses narcotic properties. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

OFFICIAL PREPARATIONS.

154a. Oleum Myristicae, U.S.—OIL OF NUTMEG. A thin, colorless or pale straw-colored volatile oil, lighter than water, and having the characteristic properties of nutmeg; on standing for a considerable length of time it becomes darker and thicker, and deposits a crystalline fatty glyceride of myristic acid. It contains a hydrocarbon, pinene, myristicin, and an oxygenated compound, myristicol, isomeric with carvol. Action and uses same as nutmeg, but rarely used. Dose: 1 to 3 drops (0.065 to 0.2 mil).

154b. OLEUM MYRISTICÆ EXPRESSUM.—EXPRESSED OIL OF NUTMEG. MACE BUTTER (see Myristica Constituents). Unctuous blocks, marbled whitish and brown. Mostly used externally.

155. Macis, N.F. (U.S. 1890).—The thick membrane or “arillode” immediately investing the kernel of the nutmeg. It comes in narrow bands, irregularly slit above into somewhat branched and lobed divisions, united at the base in an unbroken band; reddish or orange-yellow in color, with a fatty feeling when scratched or pressed; peculiar aromatic odor and taste. It contains volatile oil (about 8 per cent.), a red fixed oil, gum, resin, sugar, and proteids, but no starch. Aromatic stimulant and tonic; mostly used as a flavoring agent. Dose: 5 to 20 gr. (0.3 to 1.3 Gm.).
MENISPERMACEÆ.-Moonseed Family

Woody climbers, mostly tropical, with peltate or palmate alternate exstipulate leaves, and small dioecious, greenish, or whitish flowers in axillary panicles. Sepals and petals alike, in three rows—the petals sometimes wanting. The stamens equal or exceed the petals in number. Pistils 2 to 6, with nearly straight ovaries, which, however, are incurved in fruiting, so that the seed is either a crescent or a ring.

**Synopsis of Drugs from the Menispermaceæ**

<table>
<thead>
<tr>
<th>A. Roots.</th>
<th>B. Rhizome.</th>
<th>C. Fruit.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALUMBA, 156.</td>
<td>Menispernum, 158.</td>
<td>*Cocculus, 159.</td>
</tr>
<tr>
<td>*Pareira, 157.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

156. CALUMBA.—CALUMBA

COLUMBO

The root of *Jateorrhiza palmata* Lamarck, sliced transversely and dried.

BOTANICAL CHARACTERISTICS.—Underground stem a short, irregular rhizome, from which start numerous fleshy fusiform roots 1 to 4 inches in diameter. Leaves palmate, on long petioles. According to Bentley and Trimen, the blade of the leaf often reaches 14 inches in length. Flowers dioecious, sepals 6, petals 6, stamens 6; anther 2-celled; fruit about the size of a hazelnut, densely clothed with long, spreading hairs, each tipped with a black, oblong gland.

HABITAT.—East Africa and Madagascar, cultivated in the East Indies.

DESCRIPTION OF DRUG.—*In transverse sections*, circular or oval in outline, 25 to 50 mm. (1 to 2 in.) in diameter; 3 to 12 mm. (1/8 to 1/2 in.) thick. The outer edge is covered with a brown wrinkled layer of cork. The bark is about 9 mm. (3/8 in.) thick; a dark, shaded cambium line separates this bark from the spongy grayish-yellow central portion. In drying the central portion contracts more than the outer, hence the disks are depressed at this point, where also are found a few interrupted circles of projecting wood-bundles, while the outer portion near the cambium is distinctly radiate. A *microscopic section* shows near the center very distinct bright yellow wood-bundles, which are narrow and radiate near the bark. The parenchyma is filled with large, oval or circular starch granules.
Odor faint; taste slightly aromatic, very bitter, and mucilaginous. Dose: 30 gr. (2 Gm.).

SUBSTITUTION.—American calumba has frequently been used. It is almost uniformly much smaller, the color is not yellow, it contains no starch and is not mucilaginous. The decoction gives brown precipitate with ferric chloride.

Powder.—Characteristic elements: See Part iv, Chap. 1, B.

CONSTITUENTS.—A neutral crystalline principle, calumbin, extremely bitter, berberine, calumbic acid, and starch, of which it...
contains 33 per cent. **No tannin is present**; it can therefore be compounded with salts of iron. The best solvent for the bitter principle is dilute acetic acid. This liquid, however, is not a good menstruum. Ash, 8 per cent.

**Preparation of Calumbin.**—Infusion of columbo, made with 3 per cent. of oxalic acid, is neutralized with ammonia. Evaporate to one-third, and when cool, shake out with ether. On evaporation of ethereal solution, white calumbin is obtained.

**ACTION AND USES.**—A simple tonic, stimulating the appetite through the gustatory nerves, increasing in turn the gastric and salivary secretions. Its special value as a tonic resides in the fact that it has no disagreeable effects, such as nausea, headache, or febrile disorder, like other remedies of its class. Externally, antiseptic, disinfectant, and anthelmintic.

**OFFICIAL PREPARATION.**

**Tinctura Calumbæ** (20 per cent.). Dose: 1 to 4 fluid drams (4 to 15 mils)
The dry root of **Chondoden'drontomento'sum** Ruiz et. Pavon. With not more than 5 per cent. of stem bases.

**BOTANICAL CHARACTERISTICS.**—A vine with twining stem 4 inches in diameter; leaves large, cordate, long-petioled, with entire margins; flowers dioecious; fruit purplish, ovoid, 1-seeded, drupaceous, forming thick clusters resembling bunches of grapes.

**HABITAT.**—Brazil.

**DESCRIPTION OF DRUG.**—A long, branching, woody root, found in commerce in tortuous, subcylindrical pieces, about 100 to 150 mm. (4 to 6 in.) long, and from 20 to 100 mm. (4/5 to 4 in.) thick. *Externally* it varies from brown to light grayish-brown in color, and is marked with fissures, transverse ridges, and longitudinal wrinkles. When cut or sliced it displays a dark brown interior, leaving under the knife a waxy luster. A
cross-section displays a thin bark; within this bark circle there are two or more circles (zones) of radiating wood-wedges. About 12 of these wood-wedges are found in the central zone radiating from a common center. The outer circles (zones) of wood-wedges are separated from one another by a narrow line of parenchyma, stone cells, and compressed cells, and the short, circular, radiating wedges of wood are separated from one another by medullary tissue, making a combination of concentric and radiate arrangement which is quite characteristic. Sometimes sections of the stem are found in the drug; these have a rather thick bark and a narrow pith. Taste at first mild, then bitter and somewhat acrid; odorless.

Powder.—Brownish-yellow. Characteristic elements: Starch, ellipsoidal, simple or 2 to 4 compound (7 to 15 µ in diam.); sclerenchyma consisting of long bast fibers and numerous isodiametric or elongated stone cells 20 to 50 µ across; wood fibers, simple or bordered pits; cork, dark brown cells (20 to 25 µ in diam.); calcium oxalate, in rosettes, few.

CONSTITUENTS.—Pelosine (cissampeline), amorphous, insoluble in hot or cold water, soluble in alcohol and chloroform; starch, gum, tannin; taste sweetish-bitter.

Preparation of Pelosine (also known as Cissampeline).—Boil root in acidulated H₂SO₄ water, precipitate with K₂CO₃, purify by redissolving in acidulated water, decolorize with charcoal, again precipitate with K₂CO₃ and purify from solution in ether.

ACTION AND USES.—As a remedial agent pareira is generally conceded to be beneficial as a diuretic and tonic in the treatment of cystitis and suppurative kidney diseases, acting in a soothing manner, especially on the bladder. Formerly renowned as a lithontriptic. Dose: 30 to 60 gr. (2 to 4 Gm.). Fluidextractum Pareirae, U.S.P. 1900 Dose: ½ to 2 fluidrams (2 to 8 mils).

158. MENISPERMUM—YELLOW PARILLA.—The dry rhizome and roots of Menisper'mum canaden'se Linné. Rhizome about 1,000 mm. (40 in.) or more long, and 6 mm. (¾ in.) thick; externally dark yellowish-brown, knotty, and longitudinally wrinkled; fracture woody and tough; nearly inodorous; taste bitter. Rootlets thin, brittle, yellow. A cross-section of the rhizome displays a thick bark and a yellowish interior. Under the microscope are seen numerous wood-wedges separated by narrow medullary rays; at the extremity of each wood-ray there appears a semilunar bundle, which on longitudinal section proves to be composed of bast fibers penetrating the bark. The diameter of the pith varies, not infrequently occupying one-third of the space between the bark. The overground stem, with which the drug is not infrequently mixed, has a very large, porous pith. Constituents: Berberine (yellow) in small amount, and menispine (white), the principal constituents, with resin, tannin, and starch. Alterative, tonic, diuretic, and laxative; said to resemble sarsaparilla in its action. The root was introduced into the market as Texas sarsaparilla. Dose: 5 to 30 gr. (0.3 to 2 Gm.).
Fig. 85.—Cross-section of Meniepermum—Magnified 14 diam.

Fig. 86.—Anamirta cocculus—Flowering branch.  a, Fruit.  b, Section of same.
159. **COCCULUS.**—FISH BERRIES. *Coc'culus In'dicus*. N.F. The fruit of *Anamirta cocculus* Wight and Arnott. Obtained from a climbing shrub in Eastern India, native of Malabar coast. The berries are ovoid, kidney-shaped, and about the size of a large pea, with an obscure ridge around the convex back. Externally wrinkled and blackish-brown in color. The **endocarp** is white, and extends from the concave side deeply into the interior.

The **seed** is semilunar, oily, very bitter, but the pericarp is tasteless. The chief constituent is **picrotoxin**.

**Preparation of Picrotoxin.**—To aqueous extract add MgO; treat this with hot alcohol. Evaporate and collect the deposited picrotoxin.

Locally employed in cutaneous affections. The decoction (or tincture added to water, 1 to 4) is used as an insecticide in head lice. **Picrotoxin is an acrid narcotic poison**; in its action on the secretions it is said to resemble pilocarpine. The berries have been used from ancient times for stupefying and capturing fish, but "this unsportsmanlike method of fishing in some parts of the country is now illegal."

*Cocculus indicus* has been sometimes confounded with the fruit of the *Laurus nobilis*, commonly known as bayberry. The latter is, however, generally larger, distinctly oval in form, and the seeds lie loose within and fill the cavity of the fruit. The seed of the bayberry has an agreeable aromatic taste.

**BERBERIDACEÆ.-Barberry Family**

Herbs, shrubs, or trees with watery juice. A peculiarity of the **leaves** in the principal genus of the order suggests the name barberry; these are usually beset with spiny teeth, occasionally reduced to simple or branching spines (barbs). **Inflorescence** various; solitary (*Podophyllum*), in racemes (*Berberis*), panicles, cymes, or spikes. **Flowers** greenish (*Caulophyllum*) or white with outer greenish bractlets (*Podophyllum*); **fruit** a berry or capsule (sometimes edible—May apple).

**Synopsis of Drugs from the Berberidaceæ**

<table>
<thead>
<tr>
<th>A. Rhizomes.</th>
<th>B. Roots.</th>
<th>C. Bark.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeffersonia, 162.</td>
<td></td>
<td>Berberis cortex, 164.</td>
</tr>
</tbody>
</table>

160. **CAULOPHYLLUM.**—SQUAW ROOT. BLUE COHOSH. N.F. The rhizome and roots of *Caulophyl'lum thalictroi'ides* Linné. Off. in U.S.P. 1890. Rhizome crooked, of horizontal growth, about 1.00 mm. (4 in.) long, and 6 to 8 mm. (1/4 to 1/3 in.) thick; **on the upper side are broad cup-shaped scars** and short bent branches having concave terminations; it is beset with numerous tough and **wiry light-brown rootlets matted together**. Externally of a dull brown color, internally whitish, with
numerous narrow wood-wedges, sometimes in two circles, inclosing a large pith. The rootlets have a much thicker bark and a thick central woody cord. Nearly inodorous; taste slightly sweetish and somewhat acrid. (Highly magnified starch grains of caulophyllum, see Fig. 87.) Constituents: CAULOPHYLLINE. Resins, 12 per cent., tannin, starch, gum, etc. Caulophylline is colorless, odorless, and almost tasteless, is not precipitated by alkalies, and crystallizes with difficulty; many of its characteristics make it appear as a proximate principle belonging to a new class of bodies about which little is known.

Preparation of Caulophyllin.—Concentrate alcoholic tincture and add this to a large volume of water. Collect precipitate and dry in current of warm air.

Caulophylline—Extract drug with 60 per cent. alcohol. Evaporate tincture to a semi-solid. Add ferric hydrate and sodium bicarbonate to this residue and extract the mixture with chloroform. The principle remains on the evaporation of the solvent. Emmenagogue, diuretic, and antispasmodic; it has some reputation in the treatment of rheumatism and as an expectorant in bronchitis. Dose: 5 to 30 gr. (0.3 to 2 Gm.).

161. PODOPHYLLUM.—PODOPHYLLUM
MAYAPPLE. MANDRAKE

The dried rhizome and roots of Podophyllum peltatum Linné. Yielding not less than 3 per cent. of resin U.S.P. IX.

BOTANICAL CHARACTERISTICS.—Leaf 7-9-lobed; peltate. Flowering stem bearing two one-sided leaves with the stalk thickest near their inner edge. Flower large, white, nodding. Fruit ovoid, slightly acid, edible.
DESCRIPTION OF DRUG.—Rhizome 300 mm- (12 in.) or more long and 5 mm- (1/5 in.) thick, jointed, consisting of nodes and internodes, the length of the internodes being about 50 mm. (2 in.). The rhizome is very much thickened at the nodes, where it is sometimes branched laterally, each node having a circular scar on the upper side and about six to ten small brittle rootlets below or scars from broken rootlets; externally smooth, slightly wrinkled longitudinally, of an orange-brown color; fracture short, white and starchy, showing a rather thick bark, and from sixteen to thirty vascular bundles encircling a broad pith; the parenchyma contains chiefly starch. Odor faint and characteristic; taste sweetish, slightly acrid, and quite bitter.
Powder.—Characteristic elements: See Part iv, Chap. I, B.

Preparation of Podophyllin.—Composed of several resinous principles separable by solvents. Ether dissolves out a resin of bright yellow color, leaving a brown, odorless resin of little more prompt activity. A concentrated tincture is precipitated by water containing HCl. The precipitate is collected and dried.
Podophyllin is not found to any extent in the fresh drug, according to Lobman. It is developed to the fullest extent only by storage.

CONSTITUENTS.—Resins associated with other common vegetable principles; podophyllin (Resina podophylli, U.S.P.) 4 to 6 per cent., together with amorphous and crystalline principles. Later investigations have given prominence to the following: Podophyllotoxin, $C_{15}H_{14}O_6$ (white crystals), converted by hydration into podophyllic acid, $C_{15}H_{16}O_7$; picropodophyllin, isomeric with podophyllotoxin (inert); quercetin, yellow needles; podophylloresin (purgative). Some authorities state that the purgative principle is closely related to emodin. (See Rhamnus purshiana.)

ACTION AND USES.—Classed usually with the drastic cathartics. Dose: 10 to 20 gr. (0.6 to 1.3 Gm.). Podophyllin is an irritant to the mucous membrane; in small doses an active cathartic, having reputed cholagogue properties, hence the name “vegetable calomel.” Dose: as a laxative $\frac{1}{10}$ gr. (0.006 Gm.), as a purgative $\frac{1}{4}$ gr. (0.016 Gm.).

There is a remarkable difference shown in the medicinal activity of podophyllin, whether precipitated by water alone, whether by acidulated water, or by solution of alum. The one precipitated by water is said to be fifteen to twenty times as active as the one precipitated by acidulated water, and the one precipitated by alum much weaker than either.
OFFICIAL PREPARATIONS.

Fluidextractum Podophylli  Dose: 5 to 15 drops (0.3 to 1 mil).
Resina Podophylli  Dose: 1/8 to 1/2 gr. (0.0081 to 0.0324 Gm.).

162. JEFFERSONIA DIPHYLLA  Persoon.—TWIN-LEAF. (Rhizome.) Has properties somewhat similar to senega; it is also diuretic, alterative, and antispasmodic. Dose: 15 to 60 gr. (1 to 4 Gm.).

163. BERBERIS RADIX.—BARBERRY ROOT. The root of Berberis vulgäris  Linné. Habitat: Europe, Western Asia, and North America. Thick, muchbranched, from 25 to 50 mm. (1 to 2 in.) in diameter in the thickest part; wood light yellowish, hard, tough, with a very thin bark (see Barberry Bark below); odor slightly aromatic; taste bitter. It contains five alkaloids, of which berberine is the most interesting. Used as a tonic in doses of 30 to 60 gr. (2 to 4 Gm.).

164. BERBERIS CORTEX—BARBERRY BARK. The bark of the above root, coming in long, thin pieces, exfoliating, or separating into thin layers; outer surface yellowish-gray; inner surface bright yellow. It contains the same alkaloids as the root, but in greater proportion. This species is the host plant for the common wheat rust (Puccinia graminis) in its accidio stage. The leaves when parasitized by this fungus seem to be covered with yellow spots, the openings of the cups in which the spores are borne. Dose: 3 to 10 gr. (0.2 to 0.6 Gm.).

---

**Fig. 92.—Berberis.** Cross-section of rhizome. (12 diam.)  A. Cork.  B. Group of bast fibers.  C, Medullary ray.  D. Xylom.  (Photomicrograph.)
165. BERBERIS, N.F.

BERBERIS. (OREGON GRAPE.)—The rhizome and roots of species of the section Odostemon (Mahonia) Rafinesque of the genus Berberis Linné, without the admixture of more than 5 per cent. of the overground parts of the plant or other foreign matter. Berberis without the bark should be rejected.

In more or less knotty irregular pieces of varying length and from 3 to 50 mm. in diameter; bark from 0.5 to 2 mm. thick; wood yellowish, distinctly radiate, with narrow medullary rays, hard and tough; rhizome with a small pith; odor distinct; taste bitterish.

Powder.—Yellowish-brown composed chiefly of fragments of wood fibers associated with a few tracheae and medullary rays. Wood fibers yellow with large simple transverse pores; tracheae chiefly with bordered pores occasionally reticulate; starch grains single or 2 to 3 compound. The individual grains are irregularly spherical.

CONSTITUENTS.—Contains three alkaloids, berberine, oxycanthine and berbamine; the two latter are white. Used as tonic and alterative in doses of 8 to 30 gr. (0.5 to 2 Gm.). (Fluidextractum U.S.P. 1900.)

MONIMIACEÆ

166. BOLDUS.—BOLDO, N.F. The leaves of Peumus boldus Molina, an evergreen shrub growing in the Chilian Andes. They are broadly oval, about 50 mm. (2 in.) long, with entire margin and rough, reddish-brown surfaces, covered with numerous small glands containing a volatile oil; upper surface glossy, lower surface hairy; midrib prominent; odor fragrant; taste pungent, aromatic, somewhat bitter. They are used as an aromatic stimulant and tonic; in South America in inflammation of the genitourinary tract. Dose: 15 to 60 gr. (1 to 4 Gm.), in fl'ext., tincture, or infusion.

LAURACEÆ.—Laurel Family

Aromatic trees or shrubs, all parts of which yield volatile oil. Leaves simple, alternate, pellucid-punctate.

Synopsis of Drugs from the Lauraceæ

A. Barks.
   CINNAMOMUM ZEYLANICUM, 167.
   Cinnamomum Cassia, 168.
   CINNAMOMUM SAIGONICUM, 169.
   SASSAFRAS, 170.
   Nectandra, 173.
   Coto, 174.
   Lindera, 175.

B. Leaves.
   Laurus, 176.
   Umbellaria, 177.
   Sassafras Lignum, 171.
   *Sassafras Medulla, 172.
   CAMPHORA, 178.

C. Wood.
   OLEUM CINNAMOMI, 168 a.
   OLEUM SAASSAFRAS, 170 a.
   OLEUM CAMPHORÆ, 178 a.
   Oleum Lauri, 176 a.
   Persea, 179.
Fig. 93.—Cinnamomum zeylanicum—Branch.

Fig. 94.—Ceylon cinnamon—Cross-section of bark. C, Stone cells. D, Parenchyma containing numerous bast fibers. E, Oil-resin cells. F, Medullary rays.
167. CINNAMOMUM ZEYLANICUM

CEYLON CINNAMON

The dried inner bark of the shoots of *Cinnamo'mum zeylan'icu'm* Breyne.

BOTANICAL CHARACTERISTICS.—Tree about 30 feet high. Root with the odor of camphor as well as that of cinnamon. Leaves ovate-lanceolate, entire, smooth and shining, tasting of cloves. Flowers in panicles, usually unisexual. Drupe 1-seeded, the seed large, with oily cotyledons.

HABITAT.—Ceylon.

---

**Fig. 95.**—Cassia cinnamon—Cross-section of bark. A. Cork cells. B. Parenchyma cells. C. Stone cells. D. Bast fibers in parenchyma. E. Oil-resin cells (black line from E should have been directed to the large cell below and to the left of that letter). F. Medullary ray.
DESCRIPTION OF DRUG.—Long, cylindrical quills deprived of the corky layer by scraping; compound, consisting of 8 or more thin, papery, light brownish-yellow, quilled layers, inclosed one within the other, their sides curling inward, giving the sticks a flattened appearance on one side; somewhat flexible, with a splintery fracture; the outer surface is marked with shining, wavy bast lines, and occasionally with small scars or perforations indicating the former position of leaves; under the microscope it is seen to be formed by a layer of stone cells.

The inner surface is darker and striated. A characteristic, sweet, fragrant odor, and a warm, aromatic, pungent, and sweetish taste run through the different cinnamon barks, but the taste of the Ceylon cinnamon is the more delicate. The broken pieces, caused by repacking at custom-houses (sorted and sold as “small cinnamon”), are commonly used in pharmacy.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—All the cinnamons contain volatile oil, mucilage, resin, tannin, mannite, and bitter substance, in varying relative proportions.

In typical samples, the Saigon variety contains the most volatile oil (1 per cent. or more) and mannite, the Cassia variety coming next and the Ceylon last, the oil of the last ranging from 0.50 to nearly 1.00 per cent. Cassia contains the most and Saigon the least, of both tannin and bitter substance. The oil of cinnamon is not identical in the different barks, that of Ceylon cinnamon is recognized as of finer and more perfect flavor, while the Saigon, being sweeter, is more aromatic but the odor is less permanent. Ash, not exceeding 6 per cent.; not exceeding 2 per cent. insoluble in HCl.

ACTION AND USES.—Aromatic stimulant and tonic, carminative and astringent. The different varieties of cinnamon are among the most pleasant and efficient aromatics and form agreeable adjuvants to a great many official preparations. Dose: 8 to 30 gr. (0.5 to 2 gm.).
168. **CINNAMOMUM CASSIA.**—CASSIA BARK. The bark of the shoots of one or more undetermined species of *Cinnamomum* grown in China (Chinese cinnamon). Off. U.S.P. 1890. Cassia cinnamon is in tubes or curved pieces, of a darker yellowish-brown color than preceding, nearly deprived of the corky layer; these tubes are usually simple, rarely double, 1 mm. (1/25 in.) or more thick, and break with a rather short fracture; odor and taste similar to, but somewhat less delicate than, that of Ceylon cinnamon. Constituents the same, the volatile oil being officially recognized as from this source. This variety has been superseded by Saigon cinnamon in the official preparations containing cinnamon.
168a. **OLEUM CASSIÆ.**—OIL OF CINNAMON. Contains at least 80 per cent. of *cinnamic aldehyde*. Both the Ceylon oil and that derived from Cassia, and other cinnamon barks are found in commerce, and they are essentially the same. The oil of Ceylon cinnamon has a more delicate odor and flavor. All of the various oils of cinnamon become darker and thicker by age and exposure to the air; they have the characteristic odor of cinnamon, a sweetish, spicy, and burning taste.

**CONSTITUENTS.**—Oil of cinnamon consists chiefly of *cinnamic aldehyde*, with small quantities of hydrocarbon; when the oil is exposed to the air for a time, the cinnamic aldehyde is oxidized into cinnamic acid, two resins, and water, the oil becoming thicker and darker, and frequently separating out a few crystals of the cinnamic acid.

**OFFICIAL PREPARATIONS.**

- **Aqua Cinnamomi** (0.2 per cent.), Dose: ½ to 1 fl. oz. (15 to 30 Gm.).
- **Spiritus Cinnamomi** (10 per cent.), Dose: 10 to 20 drops (0.6 to 1.3 mils).

169. **CINNAMOMUM SAIGONICUM.**—SAIGON CINNAMON

SAIGON CASSIA

The dried bark of the stem and branches of an undetermined species of *Cinnamo'mum*

**DESCRIPTION OF DRUG.**—It takes its name from Saigon, the capital of French Cochin-China, where it is collected and exported. It is in large quills or broken pieces, 1 or 2 mm. (1/25 to 1/12 in.) thick; the gray or grayish-brown bark, which is not removed, is more or less rough and warty, longitudinally wrinkled and ridged, and covered with whitish patches. Inner bark cinnamon-brown or dark brown, with numerous white striæ near the bark; fracture short, granular; odor aromatic; taste aromatic and pungent. Ash, not exceeding 6 per cent.; not exceeding 2 per cent. insoluble in HCl.

**COMPARISON OF THE CINNAMON BARKS.**—

Color.—There is quite a difference in the depth of the color of the three barks. The Ceylon is the lightest, the Saigon is the darkest, and the Cassia intermediate. This difference in shade is shown best in the powder.
Thickness.—The Ceylon is very thin and papery. The Saigon, usually regarded as the thickest, is in the average about the same as Cassia.

Odor.—The odor and taste of the Saigon is the strongest, the Ceylon is the most delicate, the Cassia weakest.

Microscopical.—To distinguish between the barks no difficulty is experienced in cross- and longitudinal sections, which display the oilcells, stone cells, and other elements. In the powdered condition the Ceylon shows the largest stone cells. In Cassia the stone cells are less numerous and smaller. In the Saigon the oblong stone cells are about the same size as those of Cassia, but fewer in number.

Powder.—Elements of: See Part iv, Chap. I, B.

Official Preparations.

| Tinctura Cardamomi Composita (2.5 per cent.) | Dose: 1 to 3 fl. dr. (4 to 12 mls). |
| Tinctura Gambir Composita (2.5 per cent.) | $\frac{1}{2}$ to 3 fl. dr. (2 to 12 mls). |
| Tinctura Lavandulae Composita (2 per cent.) | $\frac{1}{2}$ to 2 fl. dr. (2 to 8 mls). |
| Tinctura Rhei Aromatica (4 per cent.) | $\frac{1}{8}$ to 2 fl. dr. (2 to 8 mls). |
| employed in Syrupus Rhei Aromaticus. | Employed also in Vinum Opii and Infusum Digitalis. |
| Tinctura Cinnamomi (20 per cent.) | 15 gr. (1 Gm.). |

Pulvis Aromaticus (35 per cent.), . . . . . . . . . . . . .

Fig. 97.—Saigon cinnamon—Cross-section of bark. A. Corky layer. B. Parenchyma cells. C. Stone cells. D. Bast fibers. E. Oil-resin cells. F. Medullary rays, very inconspicuous.
SASSAFRAS.—SASSAFRAS

Sassafras variifolium O. Kuntze. The various portions used in medicine are the bark of the root, the volatile oil, and the pith, all official, and the wood, unofficial.

BOTANICAL CHARACTERISTICS.—Tree with spicy, aromatic bark, 15 to 125 feet high, with yellowish-green twigs. Leaves ovate, entire, or some of them 3-lobed. Flowers dioecious, greenish-yellow, in racemes.

HABITAT.—North America, from Kansas eastward.

170. SASSAFRAS.—SASSAFRAS BARK

The dried bark of the root of Sassafras variifolium O. Kuntze, collected in early spring or autumn and deprived of the outer corky layer with not more than 2 per cent. of adhering wood present.

DESCRIPTION OF DRUG.—In small, irregular, rust-brown fragments, deprived of the grayish-brown, fissured, corky layer,
leaving a reddish or rust-brown surface; 1 to 5 mm- (1/25 to 1/5 in.) thick.
It breaks with a short, corky fracture, exposing a whitish interior dotted
with numerous oil-cells; odor highly fragrant, characteristic; taste
sweetish, aromatic. Oil is employed in the compound syrup of
sarsaparilla.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Volatile oil (about 5 per cent.), camphoraceous
matter, tannin (6 per cent.), sassafrid (a derivative of tannin, 9 per
cent.), gum, resin, starch, etc. Ash, not exceeding 30 per cent.

ACTION AND USES.-Aromatic stimulant, alterative, and astringent. It
is used almost entirely as an adjuvant or corrective. The infusion is used
as a popular household remedy for its diuretic and diaphoretic effects in
febrile states. Dose: 30 to 120 gr. (2 to 8 Gm.), in infusion.

170a. OLEUM SASSAFRAS, U.S.—A volatile oil usually distilled from
the entire root. A colorless or yellow liquid, sp. gr. 1.051.075, becoming
thicker and of a reddish color by age and exposure, and having the
characteristic odor and taste of sassafras. It contains a hydrocarbon
(safrene, C$_{10}$H$_{16}$), and an oxygenated compound, safrol, C$_{10}$H$_{10}$O$_2$
(melts at 8.5ºC., 47.3ºF.), a widely distributed principle obtained
commercially from oil of camphor, phellandrene, C$_{10}$H$_{16}$, eugenol,
C$_{10}$H$_{12}$O$_2$, etc. Generally used as a flavor. Dose: 1 to 5 drops (0.065 to
0.3 mil). The oil is sometimes adulterated with the artificial oil and a
camphor oil fraction. Virginia is said to be the chief producer of oil of
sassafras.

171. SASSAFRAS LIGNUM (Unofficial).—SASSAFRAS WOOD. The wood of the
root, coming in billets, partially or wholly deprived of bark, or in raspings or chips; pale
brownish or reddish in color, light and easily cut; medullary rays narrow; odor and
taste like the bark, but weaker, there being a smaller proportion of volatile oil. It is
used like the bark.

172. SASSAFRAS MEDULLA, N.F.—SASSAFRAS PITH

The dried pith of Sassafras variifolium O. Kuntze.

DESCRIPTION OF DRUG.—Thin, cylindrical, white pieces, very light and spongy;
inodorous; taste insipid and mucilaginous. The tissue is entirely composed of
parenchyma. It contains a mucilage (not precipitated by alcohol or lead subacetate)
which forms a limpid, ropy, viscid solution with water, but not sufficiently tenacious
to hold insoluble substances in suspension. Demulcent, often used as an application
to inflamed eyes.

PREPARATION.

Mucilago Sassafras Medullae (2 per cent.).

173. NECTANDRA.—BEBEERU BARK. GREENHEART BARK. From
Nectan'draro'diae Schomburgk. Habitat: South America. Large, flat, heavy pieces,
from 250 to 300 mm. (10 to 12 in.) long, 50 to 150 mm. (2 to 6 in.) broad; usually
deprieved of the cork, leaving longitudinal depressions in the grayishbrown outer
surface similar to the digital furrows of flat calisaya bark; internally pale brown,
roughly striate. Its structure is chiefly short liber cells filled with secondary deposit,
causing it to break with a short fracture. Inodorous; intensely bitter, somewhat
astringent. It contains tannin, beberine (identical with buxine and pelosine), and
sipirine.

ACTION AND USES.—Tonic, astringent, and febrifuge, introduced as a substitute
for cinchona as an antiperiodic, but much inferior. Dose: 15 to 60 gr. (1 to 4 Gm.),
commonly used in the form of beberine sulphate.

174. COTO.—COTO BARK. Origin undetermined. Habitat: Bolivia. Very large, flat
pieces, about 5 to 15 mm. (¼ to ¾ in.) thick, usually deprived of cork; the outer
surface cinnamon-brown, rough, having the appearance of having been shaved or
split off; inner surface darker brown, rough from numerous close ridges of
longitudinally projecting bark fiber; a fresh cross-section shows numerous small,
yellowish spots (groups of stone cells). Odor aromatic, cinnamon-like, stronger when
bruised; taste hot, bitter.

PARACOTO BARK, N.F.—Which occasionally enters our market from
Bolivia, very much resembles the above, but is marked with whitish fissures, and has
a fainter, somewhat nutmeg-like odor.

CONSTITUENTS.—Cotoin, in true coto bark, paracotoin in the other; both barks
contain volatile oil, resin, and piperonylic acid. They have established quite a
reputation in diarrhoea. Dose: 5 to 10 gr. (0.3 to 0.6 Gm.).

175. LINDERA BENZOEIN Meissner.—SPICE BUSH. (Dark, berries, and leaves.)
Aromatic stimulant, tonic, and diaphoretic. The berries have been used as a
substitute for allspice. Dose: 15 to 60 gr. (1 to 4 Gm.).

176. LAURUS.—LAUREL. SWEET BAY. The leaves of Lau'r'us nobil'is Linné.
Oval-oblong, about 50 to 100 mm. (2 to 4 in.) long, brownish, pellucid-punctate;
margin entire, wavy; taste aromatic, bitter, somewhat astringent; odor fragrant, due
to a volatile oil. The chief constituent, however, is a fixed oil (see below) present to the
extent of about 30 per cent. Stimulant and astringent, quite popular as an astringent
injection.
176a. OLEUM LAURI.—LAUREL OIL. A green, granular, semi-solid of the consistence of butter. It consists mainly of laurostearin, but contains a small quantity of volatile oil which makes it a very aromatic base for liniments and ointments.

177. UMBELLULARIA CALIFORNICA Nuttall.—CALIFORNIA LAUREL. (Leaves.) They contain a volatile oil which seems to be a strong local anesthetic, used in neuralgic headache, cerebro-spinal meningitis, intestinal colic, and atonic dyspepsia. Dose: 15 to 30 gr. (1 to 2 Gm.).

178. CAMPHORA.—CAMPHOR

GUM CAMPHOR

Sayre's Materia Medica part II - Page 53
A ketone obtained from Cinnamo'mum cam'phora Nees et Ebermaier, and purified by sublimation. It is dextrogyrate.

BOTANICAL CHARACTERISTICS.—A large and handsome tree. Leaves evergreen, shining, alternate, ovate-lanceolate. Flowers small, perfect, in corymbose panicles; anthers 4-celled, opening by terminal pores.

SOURCE.—The camphor tree grows in Japan and China, especially in the island of Formosa. This island alone furnishes half of the total product of the globe, or 5,200,000 pounds. Japan grows 1,560,000 pounds. The rest comes from China, Java, Sumatra, and Florida. It should be mentioned that the camphor of Malaysia is not extracted from Cinnamomum camphora, but from Dryobalanops aromatica. The United States alone uses 2,000,000 pounds of camphor yearly. The trunk, root, and branches are cut into chips and exposed to vapors of boiling water. The camphor volatilizes and condenses in small granules on the straw with which the head of the still is lined. It is freed from the volatile oil by draining or expressing, and is purified by resubliming with lime from a vessel into which the steam is allowed to escape through a small aperture. The camphor condenses in a compact cake, with a circular hole in the center corresponding to the aperture. Camphor has had to compete with rivals which are cheaper. In the manufacture of celluloid, the substitution of naphthalin for camphor has produced a considerable effect in controlling the high price resulting from the Japanese monopoly of the industry.

DESCRIPTION OF DRUG.—Refined camphor comes in white, translucent masses, tough and somewhat flexible, breaking with a shining, crystalline fracture; reduced to a powder only by the addition of a few drops of alcohol, ether, chloroform, glycerin, volatile or fixed oils, or other volatile liquids for which it has an affinity, by triturating with an equal weight of sugar, by precipitating the alcoholic solution with water, or by sublimation. It is very volatile, even at ordinary temperatures, giving out a characteristic penetrating odor. Taste pungent, aromatic, leaving a cooling sensation in the mouth. Lighter than water, small pieces taking up a circulatory motion therein, which ceases upon the addition of a drop of oil. Very inflammable, burning with a dense smoke, and leaving no residue. When triturated with about molecular proportions of thymol, phenol, or chloral hydrate, it liquefies. It melts at 175ºC. (347ºF.) and boils at 204ºC. (399.2ºF.).

Borneo or Sumatra camphor is an allied camphor. By oxidation it yields
ordinary camphor. Borneol Valerates have been introduced as useful in various neuroses. See “New and Non-official Remedies.”

CONSTITUENTS.—Camphor has the composition \( C_{10}H_{16}O \), and is considered as a ketone yielded indirectly by the oxidation of borneol, a secondary alcohol having the composition \( C_{10}H_{18}O \). By treatment with various reagents camphor yields a number of interesting compounds, as cymol, camphoric acid, etc. With iodine and bromine it forms compounds, one, the monobromated camphor \( (C_{9}H_{15}BrCO) \), being used as a nerve sedative in doses of 3 gr. (0.2 Gm.); it is made by heating equal portions of bromine and camphor at 172ºF.; one-half the bromine goes off as hydrobromic acid. One H of the camphor molecule, is replaced by Br in the reaction. Camphoric acid, \( C_{10}H_{16}O_{4} \), and camphronic acid, \( C_{9}H_{12}O_{6} \), are produced by oxidation with nitric acid. Ash, not more than 0.05 per cent.

**Official Preparations.**

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aqua Camphoræ (0.8 per cent.)</td>
<td>( \frac{1}{2} ) to 2 fl. oz. (15 to 30 mils).</td>
</tr>
<tr>
<td>Spiritus Camphoræ (10 per cent.)</td>
<td>5 to 40 ml (0.3 to 2.6 mils).</td>
</tr>
<tr>
<td>Tinctura Opii Camphorata (0.4 per cent.)</td>
<td>1 to 4 fl. dr. (4 to 15 mils).</td>
</tr>
<tr>
<td>Linimentum Camphoræ (20 per cent.)</td>
<td></td>
</tr>
<tr>
<td>Linimentum Saponis (4.5 per cent.)</td>
<td></td>
</tr>
<tr>
<td>Linimentum Chloroformi (70 per cent.)</td>
<td></td>
</tr>
<tr>
<td>Linimentum Belladonnae (5 per cent.)</td>
<td></td>
</tr>
</tbody>
</table>

**Action and Uses.** Stimulant and antispasmodic. Externally anodyne and rubefacient. Dose: 3 to 10 gr. (0.2 to 0.6 Gm.), in pill or emulsion.

178a. **OLEUM CAMPHORÆ.**—OIL OF CAMPHOR. Obtained in the sublimation of camphor from the wood. It is a reddish liquid with a slight yellowish tint, and is probably a mixture of a hydrocarbon and camphor. It resembles the latter in medical properties, but is more of a stimulant, and is especially applicable to those cases of bowel complaint or spasmodic cholera in which an anodyne and stimulant effect is wanted. This volatile oil must not be confounded with Linimentum Camphoræ, the common name for which, with many, is oil of camphor. Dose: 2 or 3 drops (0.13 to 0.2 mil).

179. **PERSEA GRATISSIMA** Gaertner.—ALLIGATOR PEAR. (Seeds.) Used by the Mexicans as an anthelmintic, and, in the form of liniment, in intercostal neuralgia. Dose of fl'ext.: 30 to 60 drops (2 to 4 mils)
PAPAVERACEÆ.—Poppy Family

Herbs, with milky, narcotic juice. Leaves alternate. Flowers large, with caducous calyx. Ovary one-celled, with parietal placentæ. The genus Papaver, a description of which is given under Opium, is typical of the order. See also illustrations below.

Synopsis of Drugs from the Papaveraceæ

A. Concrete Juice.
   OPIUM, 180.
B. Capsule.
   *Papaver, 181.
C. Seed, and Fixed Oil.
   Papaver, 182.
D. Herbs.
   Chelidonium, 183.
   Eschscholtzia, 184.
E. Rhizome.
   SANGUINARIA, 185.
F. Flower-petals.
   Rhoesas, 186.

180. OPIUM.—OPIUM

OPIUM

The concrete milky exudation obtained by incising the unripe capsules of Papaver somniferum Linné, and its variety, album, DeCandolle. Containing not less than 9.5 per cent. of anhydrous Morphine.

BOTANICAL CHARACTERISTICS.—Leaves large, sessile, wavy, cut, or toothed; flowers large and terminal, drooping before expansion; petals 4, large, roundish, white or purplish with a darker colored spot near the claws; stigmas 4 to 20, radiating, sessile upon the disk, which covers the ovary. Capsule obovate, 1-celled; placentæ extended so as to almost divide the cavity into several cells; dehiscence by small chinks or pores beneath the crown formed by the radiating stigmas; seeds numerous, reniform.
SOURCE.-Western Asia; cultivated in the elevated plains of India, in
Egypt, Persia, Asia Minor, and in some parts of Europe. Varieties: (1)
Smyrna, Levant, Turkey, or Constantinople; opium generally in flattish
masses—the most abundant in the market, to which descriptions in text-
books usually apply (2) Egyptian, in flattened, roundish cakes; (3)
Persian, in cylindrical sticks or cakes of a black color; (4) Indian, in flat
squares, covered with layers of mica, and further protected by a coating
of wax or an oiled-paper wrapper; (5) Chinese, in flat, globular cakes;
(6) European.

Sayre's Materia Medica part II - Page 57
DESCRIPTION OF DRUG.—In irregular or subglobular lumps weighing from four ounces to two pounds, enveloped in remnants of poppy leaves and with chaffy fruits of a species of Rumex adhering; when fresh it is plastic, breaking or tearing apart, showing an irregular, chestnut-brown surface, shining when rubbed; odor peculiar, narcotic; taste bitter. When examined with a pocket lens, it is seen to be composed of yellowish, agglutinated tears. The value of the gum, however, is determined only by assay. Opium should yield not less than 9 per cent.; powdered opium not less than 12, nor more than 12.5 per cent., of crystallized morphine when assayed by the official process.

Granulated opium, or coarsely powdered opium, is an article of commerce, and is especially recommended as a form of the drug best adapted to the preparation of the tinctures.

Powder.—Characteristic elements: See Part iv, Chap. 1, B.

ADULTERATIONS.—To increase the weight various articles are used, such as sand, clay, scrapings of poppy capsules, and various mucilaginous, albuminous, and saccharine matters. The writer has taken from the interior of about a two-pound lump of opium over a quarter of a pound of lead bullets.

A mixture sold for opium was analyzed and found to be mostly aloes which after suitable mixing, had been buried in the ground until the odor of aloes was gone.

Factitious opium has occasionally been met with, of soft consistence, blackish-brown color, less odorous than the genuine. It is probably an aqueous extract of the poppy plant.

Alkaloidal assay, and microscope, easily betray adulteration.

CONSTITUENTS.—Opium contains a mixture of sixteen or more different alkaloids, with meconic acid, coloring matters, and various inert substances. The principal constituents are the following alkaloids: Morphine, \( \text{C}_{17}\text{H}_{19}\text{NO}_3 + \text{H}_2\text{O} \), codeine, \( \text{C}_{18}\text{H}_{21}\text{NO}_3 + \text{H}_2\text{O} \) (both official); narcotine, narceine, paramorphine, papaverine, meconidine, pseudomorphine, codamine, laudanine, and oxynarcotine; these are in combination with meconic and, thebolactic acids. Mineral constituents average about 6 per cent.
Preparation of Morphine.—To the concentrated infusion of opium add three volumes of a mixture composed of one part of alcohol, two volumes of ether, and one-third volume of ammonia; shake, and set aside for crystals to form.

Preparation of Codeine.—The mother liquor, from which morphine has separated, yields crude codeine on evaporation. Obtained artificially by heating morphine with methyl iodide and soda or potassa.

Preparation of Narceine.—The concentrated infusion of opium is shaken with ether. This removes narcotine. If alkali be added in excess, codeine is deposited. From the filtrate morphine can be crystallized, and from the mother liquor narceine may be obtained upon evaporation.

Preparation of Meconic Acid.—Add CaCl$_2$ to an infusion of opium, which precipitates calcium meconate; decompose the latter by dilute HCl at 180ºF. This deposits the calcium bimeconate, which is dissolved in warm concentrated HCl, from which the pure meconic acid deposits in cooling.

ACTION AND USES.—Stimulant, narcotic, anodyne, antispasmodic, and intoxicant. It restrains the movements and checks the secretions of the stomach and intestinal canal. The dominant action of opium, however, is upon the brain, first producing mental and emotional exhilaration, then hypnotic depression. It is a powerful respiratory depressant, death usually resulting from paralysis of the respiratory center in the medulla. Toxic doses, also, finally paralyze both the heart and vagi, and produce a rapid and feeble pulse. While the effects are due to the morphine present, the drug is not fully represented by this alkaloid. Codeine is also hypnotic, but affects the cerebrum less. Narcotine is antiperiodic. Thebaine is sudorific and excitant. Dose of opium: 1 to 2 gr. (0.065 to 0.13 Gm.).

POISONING shows three stages or degrees as follows:

• 1. Rather slow respiration, slow heart but good blood pressure, much contracted pupils. The patient is sluggish or inattentive. There may be nausea perhaps retching or vomiting.

• 2. A stupor which supervenes in from fifteen to thirty minutes. The face is cyanotic flushed, the skin warm, the respirations regular, only 4 to 10 per minute, slow heart but blood pressure remains good, pupils pin point, the patient in a state of unconsciousness from which he can be aroused with difficulty.

• 3. This stage is manifested by coma and collapse. The skin is cyanotic, cold and clammy, the pulse is weak, patient cannot be aroused, respirations are very infrequent and shallow about 3 or 4 per minute.

ANTIDOTES.—Emetics, apomorphine subcutaneously injected, strong coffee and stimulants, evacuation by mechanical means (stomachpump, etc.), or rousing and walking the patient. Atropine is the physiological antagonist.
181. **PAPAVER.**—POPPY CAPSULES. (Papaveris Fructus, N.F.) The nearly ripe capsules, free from seeds, of *Papaver somniferum* Linné. There are two varieties, distinguished by the color of their seeds. The white poppy is usually considered the true opium plant; its capsule is smooth, of various shapes, but usually subglobular and somewhat flattened at the extremities; it is of a gray or a light yellowish-brown color, 50 to 100 mm. (2 to 4 in.) in diameter, crowned with the sessile stigmas arranged in a circle; placentæparietal, projecting toward the center; odor slight; taste bitter.

**CONSTITUENTS.**—Morphine, codeine, narcotine, narceine, papaverosine, and rhoeadine, united with organic acids, of which meconic is the most important.

**ACTION AND USES.**—Hypnotic and sedative in syrup or extract; local anodyne in decoction. Dose: 15 to 30 gr. (1 to 2 Gm.).

182. **PAPAVERIS SEMEN.**—Poppy SEED. MAW SEED. The seed of *Papaver somniferum*, remarkable for containing so large a per cent. of fixed oil, which is very useful in the arts, and is also demulcent and anodyne. The seeds are less than a millimeter in length, kidney-shaped, with the surface regularly pitted, giving them a beautiful appearance under a lens. There is a black-seeded and a white-seeded variety under cultivation.

Fifty per cent. of oil is obtained from the seeds by warm and 30 per cent. by cold
pressure. It is pale yellow, with a bland and slightly sweetish taste, totally destitute of narcotic properties. Poppy-seed oil is used for salads, paints, soaps, illumination, and to adulterate olive and almond oils.

183. CHELIDONIUM.—CELANDINE. The entire plant of *Chelidonium majus* Linné. Off. in U.S.P. 1890. Stem hairy, arising from a reddish-brown, branching root, and bearing light green, lyrate-pinnatifid leaves about 200 mm. (8 in.) long; odor slight; taste acrid. Cathartic, diuretic, diaphoretic, and expectorant. In certain sections it is used in the treatment of jaundice. Dose: 15 to 60 gr. (1 to 4 Gm.).

Alkaloids and Principles of Chelidonium and Allied Plants.—Important researches of J. O. Schlotterbeck have shown that chelerythrine, yielding lemon-colored salts, exists also as a prominent alkaloid in sanguinaria and other plants of the same family. Protopine, $C_{20}H_{19}NO_5$, a frequently occurring alkaloid in the poppy family, occurs also in the plants of the fumariaceæ. In physical properties protopine agrees, in every particular with fumarine. Protopine has been found in *Papaver somniferum*, *Eschscholtzia californica*, *Sanguinaria canadensis*, *Stylophorum diphyllum*, and *Adlumia cirrhosa*; it constitutes two-thirds of the entire alkaloidal content of *Bocconia cordata*. ("Proc. Amer. Phar.," 1900, p. 131.) Wintgen found the constituent, chelidonine, to be $C_{29}H_{19}NO_5 + H_2O$. Schlotterbeck finds its more exact formula as, $C_{20}H_{18}(OH)NO_4 + H_2O$. ("Proc. Am. Ph.," 1903, P. 321.) It occurs in colorless monoclinic prisms, melting at 135º to 136ºC. The coloring-matter, known as chelidoxanthin, found in chelidonium and stylophorum diphyllum, has been found to be identical with the alkaloid berberine. ("Pharm. Rev.," J an., 1902, pp. 4, 5.)

184. ESCHSCHOLTZIA CALIFORNICA Chamisso.—(Herb.) A valuable calmative, soporific, and analgesic, “free from the disadvantages of opium.” Dose of alcoholic extract: 10 gr. (0.6 Gm.), gradually increased to 3 dr. (12 Gm.) in a day.

185. SANGUINARIA.—SANGUINARIA

BLOOD ROOT

The dried rhizome of *Sanguinaria canadensis* Linné.

BOTANICAL CHARACTERISTICS.—A low perennial, common in rich woods, having a thick, prostrate root-stock, surcharged with an orange-red, acrid juice, and sending up in earliest spring a rounded, palmately lobed leaf and a one-flowered naked scape. Flower white, handsome; sepals 2; petals 8 to 12; stamens about 24; style short; stigma two-grooved; pod oblong, turgid, one-celled.

HABITAT.—Rich woods of North America.

DESCRIPTION OF DRUG.—A horizontal cylindrical rhizome about 50 mm. (2 in.) long and 10 mm. ($2/5$ in.) thick, slightly tapering and branched; *externally* reddish-brown, rough, wrinkled, and annulate;
internally spongy, **dotted with small resin cells of a ruby color**. The color of a cut surface varies from a light to a very dark red, and presents a glossy, dotted appearance; bark thin, with resin cells scattered in the parenchyma; frequently the transverse surface shows either a uniform dark blood-red color, or a whitish, starchy surface scattered with numerous red dots; **odor slight; taste bitter and acrid**; the powder is sternutatory. The infusion of the drug becomes blood-red with sulphuric or hydrochloric acid.

---

**Fig. 104.—Sanguinaria canadensis—Plant and rhizome.**

**Powder.—** Characteristic elements: See Part iv, Chap. I, B.

**ADULTERATION.—** E. M. Holmes calls attention to an adulteration of Helionas rhizome (q.v.), false unicorn, a rather expensive admixture amounting, in one case, to 40 per cent. This root has a different transverse surface, being of a dirty white hue and horny texture, and
exhibits a well-defined central column, occupying about one-third of the diameter, and containing irregularly placed vascular bundles.

CONSTITUENTS.—**Sanguinarine**, $C_{20}H_{15}NO_2$, a colorless alkaloid yielding red salts, chelerythrine yielding lemon-yellow salts, homochelidonine and protopine. See Alkaloids, under Chelidonium (183). “A careful analysis of sanguinaria shows that the yield of sanguinarine scarcely reaches 1 per cent.” Schlotterbeck believes that “the name Sanguinarine should be applied to the predominating alkaloid, to chelerythrine which forms yellow salts. Sanguinarine nitrate is becoming recognized more and more by the medical profession as a remedy in respiratory disorders and throat troubles.” Ash, not exceeding 3 per cent.

**Preparation of Sanguinarine.**—Treat infusion of the powdered rhizome with dilute HCl or acetic acid, add NH$_4$OH, collect precipitate, redissolve in alcohol, decolorize, and evaporate. It is white, soluble in alcohol, ether, benzene; yields bright red salts of an acrid taste.

**ACTION AND USES.**—An acrid emetic, stimulant, narcotic. Moderate doses produce nausea and circulatory depression, and in large doses it inflames the stomach, causing intense burning, thirst, vomiting,
dimness of vision, vertigo, great prostration, and collapse.

Powdered sanguinaria snuffed up the nostrils is sternutatory, and applied locally it acts as a stimulant to indolent ulcers and as an escharotic to fungous granulations. The physiological action of sanguinaria bears no relation to its principal therapeutic application, namely, as a stimulating expectorant in subacute and chronic bronchitis. Dose: Expectorant, 0.2 Gm. (3 gr.); emetic, 1 Gm. (15 gr.).

OFFICIAL PREPARATION.

**Tinctura Sanguinarīæ** (10 per cent.) Dose: 15 to 30 drops (1 to 2 mils)

186. **RHOEAS**.—RED Poppy. The petals of *Papaver rhoes* Linné, the red or corn poppy of our gardens, growing abundantly as a wild plant in Europe. Nearly round, 50 mm. (2 in.) broad, contracted below into a short blackish claw; when fresh, they are of a scarlet-red color, but become brownish-purple on drying, and have an opium-like odor and a somewhat bitter taste. All parts of the plant contain the alkaloid rhoeadine, which produces interesting reactions with acid and alkalies. It does not appear to be poisonous. Acid solutions produce a purple color, which disappears when neutralized. One part of the alkaloid produces a deep purple with 10,000 parts of water, rose with 20,000, and a perceptible redness with 800,000 parts. According to Hesse, the milky juice also contains meconic acid. Red poppy is a weak and uncertain opiate; used in pharmacy almost wholly in the fresh state for coloring preparations.

**FUMARIACEÆ**.—Fumitory Family

Erect or climbing herbs with alternate leaves. Slightly bitter, innocent plants. *Bocconia cordata* (= Macleya cordata), Tree Celandine, belongs to this order (see Chelidonium). Yields protopine.

187. **CORYDALIS**, N.F.—TURKEY CORN. Tubers of *Dicentra canaden'sis* De Candolle. Habitat: Canada and the mountains of the United States south to Kentucky. Small, heavy, pebble-like tubers, often united, three around a common center; of a dull yellowish to a dull black color, semitranslucent; inodorous; bitter. They contain four alkaloids, the chief of which is corydaline (C\textsubscript{18}H\textsubscript{19}NO\textsubscript{4}), four-sided prisms, inodorous, tasteless, insoluble in water, soluble in ether, alcohol, and chloroform. This interesting alkaloid has been found in other species of corydalis, as *C. cava*.

Preparation of Corydaline.—Treat the residue from evaporated tincture with dilute HCl. Precipitate with ammonia and dissolve precipitate in boiling alcohol; on evaporation of this solution four-sided prisms of the alkaloid are deposited.
CRUCIFERAE.—Mustard Family

Herbs with pungent, watery juice; sepals and petals 4 each, cruciform; stamens 6, tetradytype; capsule ususally spuriously 2-celled; fruit a siliqua or silicle.

---

188. SINAPIS ALBA

WHITE MUSTARD

The seed of *Sina'pis al'ba* Linné.

BOTANICAL CHARACTERISTICS.—Stem 1 to 2 feet high, round, smooth. Leaves lyrate-pinnatifid. Flowers yellow. Siliqua hispid. Seeds whitish, with the embryo folded upon the surface of one of the cotyledons, which is also folded so as to inclose it.

HABITAT.—Asia and Southern Europe; cultivated.

DESCRIPTION OF DRUG.—The principal difference between this and black mustard is that of color and size, being 1 to 2 mm. in diam., of a yellowish color, and less pungent. The *oily embryo consists of a curved caudicle and two cotyledons, one folded over the other*. Both the black and white seeds are practically free from starch. Commercial ground mustard is an unctuous yellowish powder which cakes on pressure; it is usually a mixture of the ground white mustard (dull yellow) and the black mustard (yellowish-green). The mixture is, however, often rendered brighter by the addition of turmeric; when this is the case, it will respond to the test for starch, and will acquire a red-brown color with a solution of borax or boric acid. The “limit of starch”

---

**Synopsis of Drugs from the Cruciferae**

A. *Seeds.*
   - SINAPIS ALBA, 188.
   - SINAPIS NIGRA, 189.

B. *Herb.*
   - Bursa Pastoris, 190.

C. *Root.*
   - Armoracia, 191.
CONSTITUENTS OF BLACK AND WHITE MUSTARD.—Both contain a fixed oil, 22 to 23 per cent.; mucilage about 19 per cent. Both seeds contain the ferment myrosin, the white having usually the larger quantity. The quantity of myrosin in these seeds is quite variable, sometimes being as low as 2 per cent., then as high as 18 per cent. A glucoside exists in the white mustard, sinalbin (C_{30}H_{44}N_{2}S_{2}O_{16}), which, decomposed by myrosin, yields glucose, sinapine sulphate, and a fixed oil, which is the sulphocyanate of acriny, and is found to be identical with para oxyphenylacetic acid. H. Salkowski manufactured this principle synthetically. The black mustard contains sinigrin (C_{10}H_{18}KNS_{2}O_{10}), which yields, when decomposed by the ferment myrosin, glucose, potassium sulphate, and a volatile oil, allyl isothiocyanate (CS:K.C_{3}H_{5}), the common mustard oil. Ash, not exceeding 9 per cent.

ACTION AND USES.—Same as Sinapis Nigra. Average dose: 2 dr. (8 Gm.).

Preparation of Sinalbin.—Extract powdered white mustard with benzene (CH) to remove oil. Treat the dried dregs with four times its weight of boiling alcohol. Filter the alcoholic liquid while hot. On standing in a cool place the liquid deposits crystals of sinalbin.

Preparation of Sinigrin.—Oil is removed, as in the case of sinalbin. The oil cake is then boiled in alcohol and evaporated to dryness. Repowder and extract with cold water. Treat the resulting liquid with barium carbonate and evaporate on a waterbath to dryness. Extract the residue with strong boiling alcohol and filter while hot. On cooling and standing the solution deposits silky needles of sinigrin, or potassium myronate.

189. SINAPIS NIGRA
BLACK MUSTARD

The ripe seed of *Brassica nigra* Linné.

BOTANICAL CHARACTERISTICS.—Similar to *S. alba* (see above), but has larger flowers, a longer hispid siliqua, and a smaller blackish seed.
HABITAT.—Asia and Southern Europe; cultivated.

DESCRIPTION OF DRUG.—A globular seed about 1 mm. (1/25 in.) in diameter, with a circular hilum and a short beak not filled with albumen; testa hard, black, or reddish-brown, finely pitted. The yellow embryo and cotyledons are folded and bent along the midrib. Inodorous when dry, but pungent and penetrating when moist; taste hot, acrid. The powder should give only a faint reaction for starch by the iodine test. Ash, not exceeding 9 per cent.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

ACTION AND USES.—Externally a powerful rubefacient and counter-irritant, internally emetic, especially valuable in cases of

Fig. 108.—Sinapis nigra—Branch.
poisoning by narcotics from its reflex stimulation of the heart and respiration. Dose: 1 to 4 dr. (4 to 15 Gm.).

OFFICIAL PRODUCTS.

189a. Oleum Sinapis Volatile. U.S.P. IX. A product yielding not less than 92 per cent. of “allyl isothiocyanate.” It is produced synthetically or obtained from the seed of Brassica Nigra by maceration with water and subsequent distillation, and must conform in name to the source from which it is derived.

Great caution should be exercised in smelling this oil. It should not be tasted except when highly diluted.

DESCRIPTION AND SOURCE.—Volatile oil of mustard is not contained as such in seeds but is formed by the decomposition of “sinigrin” or “potassium myronate” in the presence of emulsin. The ground mustard seed is deprived of its fatty oil with the aid of hydraulic presses. The press cakes are mixed with tepid water, allowed to undergo fermentation, and then distilled with water vapor. The yield varies between 0.5 to 0.75 per cent. of the original seed. At a temperature exceeding 70ºC. (158ºF.) no fermentation takes place because the myrosin is coagulated and rendered inactive.

PROPERTIES.—Oil of mustard is a colorless or yellowish, limpid and refractive liquid with an exceedingly pungent and acrid odor. Inasmuch as it draws blisters when in contact with the skin, it should not be tasted.

COMPOSITION.—In addition to “mustard oil,” C₃H₅SCN, or allyl isosulphocyanate, the oil from black mustard contains variable amounts of “allyl cyanide,” C₃H₅CN, and carbon disulphide, CS₂.

ACTION AND USES.—Volatile oil of mustard is rarely given internally. Locally it may be employed as a counter-irritant. Diluted with olive oil, it may be used as a substitute for mustard papers and as a stimulating liniment. Dose: 1/125 mil (1/8 drops).

189b. OLEUM SINAPIS EXPRESSUM (Unofficial).—Crushed seeds of the black and white mustard yield, by cold expression, about 22 per cent. of a bright yellow (white) or brownish-yellow (black) oil, of a bland taste. This oil is a commercial oil and not infrequently used for the adulteration of other oils. Rapeseed, or colza, oil is obtained from the seeds of different varieties of the genus Brassica, rape (Brassica napus) in particular. In Europe the term rapeseed oil is sometimes applied to the product of rape alone, colza being restricted to the oil obtained from the ruta-baga, or Swedish turnip (B. campestris), while “Rubsen” oil is furnished by the common turnip (B. rapa). There is great confusion among authors in the use both of the common names of the oils and the scientific names of the varieties of Brassica which produce them. The seeds of rape contain from 33 to 43 per cent. of oil, which, when crude, is a dark yellow-brown and used for lubricating. Refined and freed from albumen and mucilage the oil becomes bright yellow. Rape oil is extensively used for lamps,
lubricating machinery, and for adulterating both almond and olive oils.

190. **BURSA PASTORIS**.—SHEPHERD'S PURSE. The herb of *Capsella bursa-pastoris*, Moench, a small plant very common along our roadsides. It derives its name from its inversely heart-shaped fruit in elongated racemes. The small white flowers are in corymbose racemes. Nearly inodorous; taste acrid, pungent, and bitter. Contains a little volatile oil of mustard. An active diuretic, also tonic and stimulant. Dose: 15 to 60 gr. (1 to 4 Gm.).

191. **ARMORACIA**.—HORSE RADISH. The root of *Cochlearia armoracia* Linné. Indigenous to Europe, but cultivated in our gardens as a condiment. A cylindrical root 300 mm. (12 in.) long, 12 to 25 mm. (1/2 to 1 in.) thick; externally pale yellowish-brown, warty; internally white; fracture short; odor when crushed pungent; taste sharp and acrid. Contains a volatile oil similar to oil of mustard. Used only in fresh state as a stimulant to digestion, as a diuretic, and externally as a rubefacient. Dose: 1 to 2 dr. (4 to 8 Gm.).

**SARRACENIACEÆ.-Pitcher-plant Family**

192. **SARRACENIA FLAVA** and **S. PURPUREA** Linné.—The curious pitcher-plant, fly-trap, or side-saddle plant of our Southern States, where their rhizomes are much used in dyspepsia. They are tonic and diuretic. Dose: 15 to 30 gr. (1 to 2 Gm.).

**DROSERACEÆ.-Sundew Family.**

193. **DROSERA**, N.F.—SUNDEW. The herb of *Drosera rotundifolia* Linné. (See Conspectus.) Habitat: North America and Europe. Used principally as a pectoral in bronchitis, coughs, etc. Dose: 5 to 15 gr. (0.3 to 1 Gm.).

**CRASSULACEÆ.-Orpine Family**

194. **SEDUM ACRE**.—BITING STONE-CROP. ENGLISH MASS. The whole plant, *Sedum acre* Linné. Habitat: Europe; cultivated in New England gardens. It is said to be very successful in the treatment of diphtheritic sore throat, by dissolving and expelling the false membrane. Dose: 15 to 30 gr. (1 to 2 Gm.).

195. **PENTHORUM**.—VIRGINIA STONE-CROP. The herb of *Penthorum sedoides* Linné. Astringent, demulcent, and laxative, in diseases of the mucous membranes. Dose: 15 to 30 gr. (1 to 4 Gm.).

**SAXIFRAGEÆ.-Saxifrage Family**

196. **HEUCHERA**.—ALUM ROOT. The root of *Heuchera americana* Linné. (See Conspectus.) Habitat: United States. It contains about 14 per cent. of tannin, and is a powerful astringent in doses of 15 to 30 gr. (1 to 2 Gm.).
197. HYDRANGEA, N.F.—The root of Hydrangea arborescens Linné. (See Conspectus.) Habitat: United States. It consists of several bent, branched roots, arising from a thick, knotty head, or, as usually seen, of pieces of these roots cut up into various lengths. The rather thick, light gray, or pale brown bark is longitudinally ridged and covered with rust-colored patches, and separates easily from the tough, white, tasteless wood; wood-wedges long, narrow; odorless; taste of bark sweetish, afterward pungent. Used as a diuretic and as an antilithic in those cases where there is an alkalinity of the urine and a tendency toward the deposition of phosphatic calculi. Dose: 30 to 60 gr. (2 to 4 Gm.).

198. MITELLA NUDA Linné.—COOLWORT. (Leaves.) Diuretic; used in inflammatory and catarrhal affections of the bladder and kidneys.

HAMAMELIDACEÆ.—Witchhazel Family

Shrubs or trees with alternate, simple leaves and deciduous stipules. Flowers in heads or spikes, often polygamous or monoecious. Fruit a woody capsule, 2-beaked, 2-celled, 2-seeded. A family which contains but few species, but is dispersed over both hemispheres. The wood of a tree, Parrolin, is extremely hard, and in Persia is called iron-wood.

**Synopsis of Drugs from the Hamamelidaceae**

A. Leaves.
   *HAMAMELIDIS Folia, 199.
B. Bark.
   HAMAMELIDIS CORTEX, 200.
C. Balsam.
   STYRAX, 201.
   Liquidambar, 202.

199. HAMAMELIDIS FOLIA, N.F.—HAMAMELIS LEAVES

WITCHHAZEL

The dried leaves of Hamamelis virginiana Linné, collected in autumn before the flowering of the plants. Not more than 10 per cent. of stems and foreign matter permitted.

HABITAT.—North America.

DESCRIPTION OF DRUG.—Leaves broadly elliptical to obovate, more or less unequal, 3.5 to 12 cm. long, 2.5 to 7 cm. broad; apex rounded, acute or acuminate; base obliquely cordate; margin sinuate or sinuate-dentate. Upper surface dark green, midrib and veins prominent, veins of the first order running nearly parallel to the margin; under surface light green, texture coarse, brittle; odor slight; taste astringent.

Twigs with nodes 2-ranked giving the younger portions frequently a zigzag outline; externally yellowish-brown, with a purplish tinge, nearly smooth, faintly longitudinally wrinkled and with small circular lenticels; fracture tough, fibrous bark easily separable from the whitish or green white, finely radiate wood, in which the annular
rings are not very distinct; odor slight and characteristic.

Powder.—Dull green. Characteristic elements: The trichomes, one-celled, in groups of 8 to 15, radiating from a center; crystal fibers, calcium oxalate prisms, and stomata. Seldom employed as powder.

CONSTITUENTS.—Gallic acid; hamamelotannic acid, C_{14}H_{14}O_{9} + 5H_{2}O, resin, and extractive. Distilled Extract of Witchhazel, Hamamelis Water, Aqua Hamamelidis, is prepared from hamamelis bark by macerating the bark in water for twenty-four hours, then distilling the product until the distillate reaches 85 per cent. of the bark used; then add 15 per cent. of alcohol. It has a peculiar odor, a somewhat saccharine taste, is quite stable, and presents no pharmaceutical, chemical, or therapeutical incompatibility. Its mode of preparation has been to some extent a trade secret, but the above formula furnishes a good preparation. This preparation has built up quite an industry along the Connecticut Valley, where the distillation of the liquid is performed almost exclusively.

ACTION AND USES.—It has come into extensive use as an astringent in hemorrhoids and internal hemorrhages, and as a general vulnerary. The distillate, known as “Extract of Witchhazel,” is alleged to have properties which are not professionally recognized. Average dose: 30 gr. (2 Gm.).

Fluidextractum Hamamelidis Foliorum, Dose: 10 to 60 drops (0.6 to 4 mils)

200. HAMAMELIDIS CORTEX.—WITCH-HAZEL BARK. Thin pieces covered with an easily separable grayish or grayish-brown cork, more or less covered with blackish dots and scars. When deprived of this layer, the bark is pale cinnamon-brown, fibrous. Odorless; taste astringent, bitter, and somewhat pungent. Its medical properties are the same as those of the leaves. The bark and twigs are official under the above title.

201. STYRAX.—STORAX

LIQUID STORAX

A balsam obtained from the wood and inner bark of Liquid'ambar orientalis Miller.

SOURCE AND DESCRIPTION.—This balsam is not a natural part of the plant but is produced as a result of the stimulus from wounds in the bark. The outer bark is bruised, then the inner bark becomes saturated with this pathological exudation. The outer bark is removed and the inner is boiled in sea water, the storax is skimmed off the surface as it rises, then afterward the boiled bark is pressed. The bark which yet contains some balsam is dried and used chiefly as incense. Good storax should not contain over 30 per cent. of water and 60 per cent. should be soluble in alcohol.
The Liquidambar orientalis, growing in the southwest districts of Asia Minor, produces the balsam also, it is said. It is a gigantic tree “like the great oak, having clusters (of berries) like those of the oak, but its berries are larger.” The inner bark of the tree is boiled in water and the balsam pressed out. A superior kind is said to be obtained by simply pressing the bark before it is boiled. Another kind of liquid storax is mentioned—that which exudes naturally.

HABITAT.—Asia Minor.

DESCRIPTION OF DRUG.—It is a viscid, gray semi-liquid, with an agreeable odor, and a balsamic, somewhat acrid taste; a heavier dark brown layer separates on standing.

CONSTITUENTS.—Containing a volatile oil and a resin, and cinnamic and benzoic acids, storax is rightly classed as a balsam. Its most
abundant constituent is storesin, C_{36}H_{58}O_{3}, existing both free and as a cinnamic ether. Cinnamic acid exists to the extent of 6 to 12 per cent., various ethers of it occurring, styrcin being the cinnamate of cinnamyl. Storax also contains a liquid hydrocarbon, styrol, C_{8}H_{8}, or cinnamene, having the storax odor and taste, and another fragrant constituent, vanillin, not more than 1 per cent. of ash.

ACTION AND USES.—Stimulant expectorant. Dose: 5 to 20 gr. (0.3 to 1.3 Gm.).

OFFICIAL PREPARATION.

Tinctura Benzoini Composita (8 per cent.), Dose: 1/2 to 2 fl. dr. (2 to 8 mils).

202. LIQUIDAMBAR.—SWEET Gum. A balsam exuding spontaneously or from incisions made in the trunk of Liquidam'bar styra'ci'flua. Habitat: Southern United States and Central America. It is a pale yellowish, opaque liquid of honey-like consistence, or thick, golden brown, solidifying on exposure to a transparent, amber-colored mass, which softens at the heat of the hand; odor storax-like; taste aromatic and pungent. Stimulant expectorant, mostly used in the manufacture of chewing-gum.

ROSACEÆ.-Rose Family

Herbs, shrubs, or trees, with pinnate, palmate, or simple, alternate leaves. Flowers, regular, sepals, usually 5, united petals 5, perigynous; stamens numerous distinct, perigynous; pistils 1 to many. The different tribes are characterized by the fruit—a drupe in Pruneæ, follicles in Spirææ, druples in Rubeæ, dry akenes in Potentilleæ and Poterieæ, bony akenes in Roseæ, and pomes in Pomeæ. Except in the seeds of the drupe-fruits, which develop the poison hydrocyanic acid, this order is destitute of noxious qualities.

Synopsis of Drugs from the Rosaceæ

A. Barks.
   PRUNUS VIRGINIANA, 203.
   Choke Cherry, 204.
   Malus, 207.
   *RUBUS, 217.
   *Quillaja, 212.

D. Leaves.
   Persica, 206.
   Laurocerasus, 220.
   Pragaria, 221.

E. Flowers and Petals.
   ROSA GALLICA, 213.
   Rosa Centifolia, 214.
   *Cusso, 222.

B. Seeds.
   AMYGDALA AMARA, 209.
   AMYGDALA DULCIS, 210.
   Cydonium, 208.

F. Rhizomes.
   Tormentilla, 223.
   Geum Urbanum, 224.
   Geum Rivale, 225.
   Gillenia, 226.

G. Herbs.
   Agrimonia, 227.
   Potentilla, 228.
   Spiraea, 229.
   Rosa Canina, 215.

H. Volatile Oils.
   OLEUM ROSEÆ, 216.
   OLEUM AMYGDALÆ AMARÆ, 209 a.

I. Fixed Oils.
   OLEUM AMYGDALÆ EXPRESSUM, 211.
The bark of *Prunus serotina* Ehrhart, collected in autumn and carefully dried and preserved.

**BOTANICAL CHARACTERISTICS.**—A large forest tree. Leaves oval-oblong or lance-oblong, brilliant green, smooth on both sides, unequally serrate; flowers white, in racemes; drupes purplish-black and shining; bitter.

**SOURCE.**—United States and Canada. Although the name *Prunus virginiana* has been held as the official and medicinal name, the botanical name is *P. serotina*. This leads to confusion among botanists, who strongly urge the discontinuance of the above official title. *Prunus virginiana* is the botanical name of the common choke cherry, not of the black wild cherry. *Prunus Pennsylvanica*, the wild red cherry, growing in rock woods and along the lake shores, is frequently mistaken for the *P. serotina*.

**DESCRIPTION OF DRUG.**—About 2 mm. (1/12 in.) or more in thickness, curved or flat. The newer bark is covered with a smooth, greenish *periderm*, but bark collected from the older parts usually has the corky layer removed, leaving a rough, rust-brown *surface*, inner *surface* lighter colored, finely striate; fracture granular. Almost inodorous, but emits the characteristic odor of bitter almonds when moistened; taste astringent, aromatic, and bitter, at the last bitter almond-like.

**STRUCTURE.**—Beneath the corky layer are found numerous clusters of stone cells, forming an interrupted zone. Just beneath this layer the medullary rays, which in the whole bark are wavy, terminate very obliquely. Between the medullary rays...
are found masses of stone cells and more elongated bast fibers.

The bark of the root is thought to be the most active, but that of the whole tree is collected indiscriminately.

RELATIVE VALUE OF THE OLD AND NEW BARK.—Experiments by Dohme and by Stevens have been made to decide whether the green bark is richer in hydrocyanic acid than the older, thick, brown bark. The results of the experiments of these gentlemen are somewhat contradictory. Dohme obtains 0.216 and 0.183 per cent. of HCN respectively, while the older bark assays 0.167 and 0.159 per cent. Stevens found in the older bark 0.335 per cent., while the younger assayed only 0.25 per cent. It is probably safe to say that the older thick bark is not so unworthy of recognition as some believe.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Tannin, a bitter glucoside, resin, starch, etc. The volatile oil and hydrocyanic acid, to which the sedative action is due, do not preexist in the bark, but, as in the bitter almond, are formed by the action on amygdalin, in the presence of water, of a ferment analogous to, if not identical with, emulsin; the action of this ferment is destroyed at a boiling temperature, and therefore heat should never be used in making preparations of this bark.

ACTION AND USES.—Tonic and sedative. Owing to the bitter principle it is a stomachic and bitter tonic. Useful in gastric atony and general debility. The syrup forms the basis of many of the cough syrups. Dose: 30 to 60 gr. (2 to 4 Gm.).

OFFICIAL PREPARATION.

Syrupus Pruni Virginianæ  Dose: 1 to 4 fl. dr. (4 to 15 mils).

204. CHOOSE CHERRY.—The bark of Prunus virginiana Linné, a small tree growing in the Northern and Western States. Tonic and antiperiodic.

205. PRUNUM, N.F.—PRUNE

PRUNE

The partly dried ripe fruit of Prunus domestica Linné.
BOTANICAL CHARACTERISTICS.—The French variety, or Juliana, the principal commercial prune, bears ovate-oblong, deep-purple drupes, not depressed at the insertion of the stalk, and with a scarcely visible suture and no furrow; pulp greenish and rather austere. The tree is small, with smooth branches and elliptical leaves; flower-buds formed of one or two flowers; petals white, oblong-ovate.

HABITAT.—Western Asia; cultivated in temperate regions. Most of the prunes come from France, the best from Bordeaux.

DESCRIPTION OF DRUG.—Dried shriveled, oblong, almost globular, about 30 mm. (11/3 in.) long; externally brownish-black. The sarcocarp (the medicinal portion) consists of a brownish-yellow pulp having a sweet, acidulous taste, and surrounds a single stone (putamen), which is very hard, smooth or ridged, and incloses a white, bitter weed.

CONSTITUENTS.—Sugar 12 to 25 per cent., pectin, malic acid, and salts. The seeds contain fixed oil, amygdalin, and emulsin.

Preparation of Amygdalin.—Obtained by solvent action of boiling alcohol upon the “oil cake,” evaporating off alcohol, fermenting residue by yeast, and precipitating amygdalin and gum. Boiling alcohol takes up the principle which is deposited on
cooling.

ACTION AND USES.—Laxative and nutrient, as an article of food or in laxative confections. Confectio Sennæ (U.S.P. VIII). Dose: 1 to 3 dr. (4 to 12 GM.).

206. PERSICA.—PEACH LEAVES. From Pru'nus persica Linné. Mild sedative, generally administered in infusion. Dose: 15 to 30 gr. (1 to 2 Gm.).

207. MALUS.—APPLE TREE. The bark of Pyr'us ma'lus Linné. Tonic and febrifuge. Dose of fluidextract: 15 to 60 drops (1 to 4 mils).

SUCCUS POMARUM, N.F.—The freshly expressed juice of sound, ripe, sour apples, of cultivated varieties.

208. CYDONIUM.—QUINCE SEED. Pyr'us cydo'nia Linné. Habitat: Western Asia; cultivated. About 6 mm. (¼ in.) long, ovate, somewhat triangularly compressed, with the hilum near the pointed end; testa dark brown, covered with a thin, mucilaginous membrane or epithelium, causing the seeds to adhere in masses. The two cotyledons are thick and oily, veined, with a short conical radicle. Taste and odor of the embryo like bitter almonds, of the unbroken seed mucilaginous and insipid. The testa contains a large amount of mucilage; the embryo, fixed oil. A decoction is often used as a demulcent, and as an addition to eye-lotions.

209. AMYGDALA AMARA.—BITTER ALMOND (U.S.P. VIII)

BITTER ALMOND

The ripe seed of Pru'nus Amyg'dalus, var. Amara, De Candolle.

This is an oblong-ovate flattened seed with marked numerous longitudinal lines. Inodorous, bitter. Constituents: Fixed Oil, 45 per cent. and amygdalin a crystalline glycoside, which by the action of emulsin, a ferment existing in the seed in the presence of water, splits up into glucose, HCN and benzaldehyde. Used as a sedative. From the seed is extracted the fixed oil by expression, and, from the residue, the volatile oil by distillation.

209a. OLEUM AMYGDALÆ AMARÆ, U.S.—OIL OF BITTER ALMOND. A pale yellowish volatile oil obtained by macerating in water the residue left from bitter almonds after the fixed oil has been expressed, and distilling. It has a bitter, acrid taste, and a strong odor of hydrocyanic acid. It consists chiefly of benzoic aldehyde, to the oxidation of which is due the sediment, benzoic acid, thrown down on long exposure to air. The source from which it is derived in every case to be stated on the label. It should yield when assayed by the U.S.P. process not less than 85 per cent. of benzaldehyde and not less than 2 per cent. nor more than 4 per cent. of HCN. This oil is intended for
medicinal use and not for flavoring foods. Sedative. Dose: \( \frac{1}{4} \) to 1 drops (0.0164 to 0.0650 mil), in emulsion.

OFFICIAL PREPARATIONS.

Aqua Amygdalæ Amaræ (0.1 per cent.), Dose: \( \frac{1}{2} \) to 2 fl. dr. (2 to 8 mils).
Spiritus Amygdalæ Amaræ (1 per cent.), Dose: 5 drops (0.3 mil).

210. AMYGDALA DULCIS.—SWEET ALMOND

SWEET ALMOND

The ripe seed of Pru'num Amygdalus, var. Dulcis, De Candolle.

Fig. 113.—Prunus amygdalus—Branch, flower, and fruit.

BOTANICAL CHARACTERISTICS.—Like Amygdala Amara, except that the style is much longer than the stamens, and the seed is sweet.
SOURCE.—Western Asia and Barbary; extensively cultivated in Southern Europe, Spain and Southern France chiefly supplying the market.

DESCRIPTION OF DRUG.—Closely resembles the bitter almond, but is somewhat larger, with more convex sides, and has a bland, sweetish taste, free from rancidity. When triturated with water, it forms a milk-white emulsion, free from the odor of hydrocyanic acid.

CONSTITUENTS.—Fixed oil from 50 to 55 per cent., nitrogenous compounds 25 per cent. (myrosin, vitellin, conglutin) precipitated by acetic acid, emulsin, mucilage, and sugar amounting to about 6 per cent. Ash, not exceeding 4 per cent.

ACTION AND USES.—Nutrient and demulcent; being free from starch, sweet almonds are often used as a diet in diabetes.

OFFICIAL PREPARATION.

Emulsum Amygdalae (6 per cent.), Dose: 2 to 8 fl, oz. (60 to 240 mils)

211. OLEUM AMYGDALÆ, EXPRESSUM.—EXPRESSED OIL OF ALMOND

ALMOND OIL

A fixed oil expressed from Bitter or Sweet Almond.

DESCRIPTION.—A thin, clear, colorless or straw-colored liquid, with a mild, sweet taste and slight odor.

CONSTITUENTS.—Chiefly olein, with a slight quantity of palmitin.

ACTION AND USES.—Lenitive in pulmonary affections, in the form of emulsion. Dose: 1 to 4 fl dr. (4 to 15 mils),

OFFICIAL PREPARATION.

Unguentum Aquæ Rosæ (56 per cent., with spermaceti, white wax, stronger rose-water and borax).
212. QUILLAJA, N.F.—QUILLAJA

SOAPBARK

The dried bark derived of the periderm of *Quilla'ja saponaria* Molina.

DESCRIPTION OF DRUG.—In rather thick, flattish pieces of various sizes, deprived of the corky layer; outer surface brownish-white, sometimes with patches of the reddish-brown cork adhering; when held up to the light it shows numerous glistening crystals of calcium oxalate, which are scattered throughout the tissue. Fracture tough and is fibrous, a transverse section showing a checkered arrangement of pale brown bast fibers imbedded in the white wood. Odorless; taste persistently acrid. The powder is sternutatory. The powder of quillaja has been suspected as an adulterant of senega. It is not at all difficult to detect its presence in such admixtures, as in quillaja powder there are found elements not at all represented in senega. In quillaja there is a considerable amount of sclerotic tissue, numerous bast fibers, and prismatic crystals of calcium oxalate. Any and all of these clearly mark the powder of quillaja, and would at once betray its presence in the powder of senega.

Powder.—Grayish. Inner parenchyma of cortex colorless (15 to 25 μ by 50 to 150 μ in diam.), mostly with large, long prisms of calcium oxalate; parenchyma of cortex with starch (3 to 10 μ in diam.); sclerenchyma with bast fibers (20 to 30 μ in diam.), thick-walled, porous, occasionally branched; stone cells (50 to 150 μ in diam.).

CONSTITUENTS.—Its irritant property is due to the presence of saponin, C_{19}H_{30}O_{10}, a mixture of the two glucosides, quillaiac acid and sapotoxin.
Preparation of Saponin.—Exhaust quillaja with hot alcohol, from which it separates upon cooling. Saponin is regarded as a mixture of two glucosides, quillaiac acid and sapotoxin.

ACTION AND USES.—Containing about the same principles as senega, it has been recommended as a substitute for that drug as an expectorant in pulmonary affections. Dose: 15 to 30 gr. (1 to 2 Gm.).
213. ROSA GALLICA.—RED ROSE

RED ROSE

The dried petals of *Rosa gallica* Linné, collected before expanding.

BOTANICAL CHARACTERISTICS.—A dwarfish bush, with odd-pinnate leaves and adnate stipules; leaflets elliptical, rugose. Flowers large, red; stamens many. Carpels several, becoming bony akenes in fruit. Receptacle urn-shaped, with styles rising from inner surface.

HABITAT.—Asia and Europe; cultivated.

DESCRIPTION OF DRUGS.—The buds are collected before expanding, the petals being loosely imbricated in the form of cones, or separate and crumpled. They are roundish-obovate, with a dark red, velvety appearance, which they retain after drying, during which process the fresh petals lose go per cent. of their weight; claws yellow; odor fragrant; taste bitter and astringent.

Powder.—Elements in: See Part iv, Chap. I, B.

CONSTITUENTS.—The astringency is due principally to quercitrin, with which their color is also doubtless connected. They contain some tannin, fat, and volatile oil. Boiling water extracts their virtues.

Not more than 3.5 per cent. of ash.

ACTION AND USES.—Mild tonic and astringent; chiefly employed as a vehicle for tonic and astringent preparations. Dose: 15 to 60 gr. (1 to 4 Gm.).

OFFICIAL PREPARATIONS.

*Fluidextractum Rosæ* Dose: 15 to 60 drops (1 to 4 mils).

*Mel Rosæ* (12 per cent.).

214. ROSA CENTIFOLIA.—PALE ROSE, HUNDRED-LEAVED OR CABBAGE ROSE.

The petals of *Rosa centifolia* Linné. Off. U.S.P. 1890. The full-blown flower is picked off just below the calyx, and the petals separated. They are a beautiful pink when fresh, dull brown when dry; thin and delicate, roundish-ovovate, sometimes obcordate, with a fragrant odor, and a bitter, faintly astringent taste. They may be preserved fresh for a considerable time by packing them in half their weight of common salt. These petals were formerly used in making the compound syrup of
sarsaparilla, but wisely have been dropped as one of the ingredients. Constituents: Malic and tartaric acids, tannin, etc. Their odor depends upon a volatile oil existing in small quan- tity, about 0.04 per cent. Seldom, if ever, used medicinally, In pharmacy used principally for preparing rose-water.

215. **ROSA CANINA**.—Hips. DOG ROSE. The fruit of *Rosa canina* Linné, common in Europe. Ovoid, or pitcher-shaped, about 18 mm. (3/4 in.) long, with a smooth, shining, red surface. It consists of the ripened fleshy calyx, surmounted by the five calyx teeth; its cavity is hairy inside, and contains numerous hard, hairy akenes, but these akenes and hairs are removed before the hips are used. Taste acidulous, slightly astringent, due to the malic and citric acids and slight quantity of tannin contained; odorless. Refrigerant, mild astringent, and diuretic. Confection of hips is a familiar preparation abroad.

216. **OLEUM ROSÆ**.—OIL OF ROSE, ATTAR OF ROSES

A volatile oil distilled from the fresh flowers of *Rosa damascena* Miller.

**SOURCE.**—District of Kisanlik, in southern slope of the Balkans.

**DESCRIPTION.**—A pale yellow liquid having a specific gravity of 0.87, an agreeable rose odor, and sweetish taste. It solidifies between 16° and 21°C. into a transparent solid, containing numerous slender, iridescent crystals of the stearopten, which float on the surface when the solid is melted, as by the heat of the hand.

**CONSTITUENTS.**—It consists of two parts, one of which is fragrant and the other comparatively inodorous. The fragrant principles are mainly geraniol and citronellol; the other a white crystalline stearopten, C16H34, melting at 36.5° to 38°C. Used as a perfume in ointments, pomades, etc.

217. **RUBUS, N.F.**—RUBUS

BLACKBERRY ROOT

The dried bark of the rhizome of *Rubus villosus* Aiton, Rubus Nigrobaccus; Bailey, and Rubus cuneifolius Pursh.

**DESCRIPTION OF DRUG.**—In thin, tough, pliable bands 1 to 2 mm. (1/25 to 1/12 in.) thick, having a blackish-gray outer surface, longitudinally wrinkled, and a pale brown inner surface; bast layers tangential, the fibers easily removed. Odorless; taste
Astringent and somewhat bitter. The root of *Rubus canadensis* Linné (dewberry) very closely resembles that of blackberry in medical properties.

**Powder.**—Light brown. Characteristic elements: Parenchyma of cortex, thin walled, with starch, spherical (3 to 7 µ in diam.), thick, porous, elongated; bast fibers, walls of medium thickness, with some starch; wood fibers, ducts and tracheids, numerous with simple pores; cork considerable (20 to 30 µ in diam.); calcium oxalate crystals, aggregate (25 to 30 µ in diam.).

**CONSTITUENTS.**—The virtues of the bark depend chiefly upon the tannin present, about 10 to 15 per cent.

**ACTION AND USES.**—Tonic and astringent. From a popular domestic remedy it has come into extensive use in the treatment of diarrhea, dysentery, and relaxed conditions of the bowels generally. Dose: 15 to 30 gr. (1 to 2 Gm.).
PREPARATIONS: Fluidextractum Rubi, Syrupus Rubi, N.F.

RUBI FRUCTUS, N.F.—Includes two varieties of ripe fruits: Nigrobus and Villosus. A Syrup is recognized in the N.F.

218. RUBUS IDÆUS.—RASPBERRY. The fruit of Ru'bus idæ'us Linné. Off. U.S.P. 1890. A collective fruit, hemispherical, about 12 mm. (¼ in.) broad; it consists of numerous small, red, hairy drupes united at the base around the receptacle, from which the coalesced fruits are easily removed, leaving a conical cavity. Contains a bright red, acidulous juice; odor agreeable. Used only in the fresh state. The purplish-black fruit of Rubus occidentalis Linné may be substituted for it.

SYRUPUS RUBI IDÆI—Rubí Ídæi Fructus, N.F., includes two varieties: Ídaeus and Strigosus.

219. CRATAEGUS.—The fruit of Crată'egus oxyac'an'tha, English Hawthorn. Heart tonic. Its value as a cardiac stimulant and tonic has recently come to, the medical profession through Dr. M. C. Jennings, of Chicago. Dose of fluidextract: 10 to 15 drops (0.6 to 0.9 mil).

220. LAUROCERASUS.—CHERRY LAUREL. The leaves of Pru'nus lauroceras'sus Linné, an ornamental shrub native to Western Asia. They contain an amygdalin-like principle, laurocerasin, and a ferment. Odor bitter, almond-like; taste aromatic and bitter. Used in making cherry-laurel water, a preparation much employed in Europe as a sedative narcotic, much as the dilute hydrocyanic acid is used here.
221. **FRAGARIA VESCA** Linné.—STRAWBERRY. (Leaves.) Mild astringent and diuretic. Dose: 1 dr. (4 Gm.), in infusion.

222. **BRAYERA, KOOSO, N.F.**

The dried panicles of the pistillate flowers of *Hage'nia abyssin'ica* Gmelin, without the presence of more than 10 per cent. of the staminate flowers, other parts of the tree, or other foreign matter. Reject any portions of the stem over 3 mm. in diameter and any binding material before the drug is powdered or used.

HABITAT.-Abyssinia.

DESCRIPTION.—Small, reddish, pistillate flowers, consisting of two reddish bracts and a calyx of five reddish, hairy sepals inclosing one or two nutlets. They come into
market in cylindrical bundles of the compressed panicles, or detached, on short, hairy peduncles; odor tea-like; taste bitter and nauseous. In trade the “brown” and “red” kusso are known. The former are mixed with male flowers. In the “red,” the best variety, the sepals are reddish; in the “brown” they are greenish or brownish and smaller.

Fig. 119.—*Hagenia abyssinica*—Flowering branch, and male and female flowers.
Powder.—Light brown. Characteristic elements: These are to be found in the glandular trichomes consisting of stalks, 2 to 3 celled, head 1, 2, 4 celled; non-glandular trichomes, one-celled, curved; few ellipsoidal pollen grains with 3 pores. Powder seldom dispensed.

CONSTITUENTS.—The chief constituents are kosotoxin (amorphous), a muscle poison, and protokosin (crystalline), inactive. Kosotoxin with baryta water yields a neutral body said to be identical with commercial kosin, an active principle soluble in alkalies; a neutral principle, Koussein (dose: 15 to 30 gr.) is marketed; tannin 24 per cent., and a tasteless and an acrid resin. Ash, not more than 9 per cent.

Preparation of Kosin.—Heat cusso repeatedly with alcohol to which calcium hydrate has been added, boil residue with water, mix liquids, filter, and distil. Kosin is then precipitated by treating the solution with acetic acid. Is in flocculent form, soon becoming dense and resin-like. Purified by crystallization.

ACTION AND USES.—Tænifuge. Dose: 15 Gm. (240 gr.).

Fluidextractum Cusso (U.S.P. 1890). Dose: 1 to 4 fl. dr. (4 to 15 mils).

223. TORMENTILLA.—TORMENTIL. The rhizome of Potentil'la tormenti'la Sibthorp. Habitat: Europe. Large, somewhat fusiform, longitudinally wrinkled, and rough from numerous stem and rootlet scars; externally dull reddish-brown; fracture smooth, showing a pale reddish interior, consisting of one or two distinct circles of wood-fiber around a large central pith; inodorous; taste astringent. Used as a tonic and astringent. Dose: 10 to 30 gr. (0.6 to 2 Gm.), in powder or decoction.

224. GEUM URBANUM.—AVENS. EUROPEAN AVENS. The rhizome of Ge'um urba'num Linné. Habitat: Europe. Short, oblong, hard, with a dark-brown, warty, and scaly surface; a cross-section shows a thin bark, and a large, reddish pith surrounded by a circle of whitish wood. The rootlets are long and fibrous, light brown in color, and have a comparatively thicker bark. Odor aromatic, slightly clove-like when fresh, but nearly absent when dry; taste aromatic, bitter, and astringent. Used as an astringent and tonic. Dose: 15 to 45 gr. (1 to 3 Gm.), in powder or decoction.

225. GEUM RIVALE Linné.—WATER AVENS. (Rhizome.—See Conspectus.) Astringent and tonic. Dose: 15 to 45 gr. (1 to 3 Gm.).

226. GILLENIA.—AMERICAN IPECAC. The rhizome of Gille'nia stipula'cea Nuttall. Habitat: Western United States. A knotty rhizome, with numerous tortuous, annulate rootlets, the thick bark of which is in two reddish layers and incloses a tough, whitish, finely-rayed wood. Gillenia trifoliata Moench, growing east of the Allegheny Mountains, is a smaller and less knotty rhizome, and the rootlets are nearly straight and smooth. Both rhizomes are similar in medical properties, being mildly emetic and cathartic, somewhat resembling ipecac in action. Dose: 15 to 30 gr. (1 to 2 Gm.).
227. **AGRIMONIA.**—AGRIMONY. The herb of *Agrimonia eupatoria* Linné. Common in the United States west to the Rocky Mountains, and in Europe. Tonic and astringent. Dose: 30 to 60 gr. (2 to 4 Gm.).

228. **POTENTILLA CANADENSIS** Linné.—CINQUEFOIL. Habitat: North America. (Herb.) Astringent. Dose: 30 to 60 gr. (2 to 4 Gm.) in infusion.

229. **SPIRÆA TOMENTOSA** Linné.—HARDHACK. An indigenous herb used as astringent and tonic in doses of 30 to 60 gr. (2 to 4 Gm.). As found in market it consists of the slender, reddish-brown stems, broken leaves covered below with a rust-brown wool, and a few of the dull reddish flower-petals. Odor slight, aromatic; taste astringent and bitter.
LEGUMINOSÆ.—Pulse Family

Herbs, shrubs, or trees with alternate and usually compound leaves. Flowers papilionaceous, or rarely regular. Stamens usually ten and mostly monadelphous or diadelphous. Pistil becoming in fruit a legume, from which the order takes its name. Most of the plants are innoxious; the marked exception to the rule, however, is the calabar bean.

230. GLYCYRRHIZA.—GLYCYRRHIZA

LICORICE ROOT

The dried rhizome and root of Glycyrrhiza glabra typica Regel et Herder, and Glycyrrhiza glabra glandulifera Regel et Herder. Spanish and Russian respectively.

BOTANICAL CHARACTERISTICS.—Plants 4 to 5 feet high. Leaves impairipinnate; leaflets about 13, oval. Racemes axillary, flowers distinct, pale blue. Legume ovate, compressed.
SOURCE.—Russia exports the largest amount, Syria the smallest. Partiality for the Spanish root is now unwarranted; the dose digging, and the limited and practically exhausted fields of Spain are the causes of its deterioration. Russia, with its new and almost unlimited fields, furnishes roots rich in glycyrrhizin and extractive, much better suited for commercial purposes because better and cheaper than the Spanish root. Anatolian root ranks between the Spanish and Russian in the quality of sweetness. In commerce no attention is paid to the botanical varieties of licorice root. From the root alone it is quite impossible to determine its true botanical origin, the usual designation being from the
countries of growth, as Spanish, Russian, Anatolian, etc., although all varieties except the Spanish are often classified as “Greek root.” Peeled root may now be prepared in Russia, but Syria formerly prepared it for shipment to Europe, some of which found its way into the market as “peeled Russian.”

**DESCRIPTION OF DRUG.—** Long, cylindrical pieces from 5 to 25 mm. (1/5 to 1 in.) in diameter; externally dark-brown, longitudinally wrinkled; internally of a light-yellow color; pliable, fibrous, tough, readily tearing into long, fibrous strips. Odor peculiar, earthy, taste sweetish, afterward acrid. A cross-section shows a rather thick bark, the inner layer of which is composed principally of bast fibers. The meditullium is made up of three kinds of cells, ligneous, with oblique ends, parenchymatous, almost cubical, and large pitted ducts giving to the wood a porous appearance. Wood-wedges narrow, separated by distinct medullary rays.

Glycyrrhizal glabra glandulifera, so-called Russian, is thicker, less sweet, and more acrid than G. glabra typica (Spanish).

Powder.—Characteristic elements; See Part iv, Chap. I, B.
CONSTITUENTS.—Glycyrrhizin, asparagin, glycyramarin, an acrid resin, starch, etc. Glycyrrhizin is a glucosid, sparingly soluble in alcohol and ether, splitting up by hydrolysis into sugar and a brownish-yellow bitter substance, glycyrrhetin; it probably exists in combination with ammonia. Ash, not to exceed 7 per cent.

Preparation of Glycyrrhizin.—Obtained from the cold infusion (from which albumen has been removed by heat) by precipitating with $\text{H}_2\text{SO}_4$. Purify precipitate by dissolving in very weak ammonia water 1 to 10, filtering, and evaporating.

ACTION AND USES.—Expectorant and demulcent in bronchial affections. Frequently used to disguise the disagreeable taste of other medicines, and as a sweetening ingredient for medicinal preparations. Dose: 15 to 60 gr. (1 to 4 Gm.).

**Official Preparations.**

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidextractum Glycyrrhizae, ...</td>
<td>15 to 60 ml (1 to 4 mils).</td>
</tr>
<tr>
<td>Extractum Glycyrrhizae Purum, ...</td>
<td>5 to 60 gr. (0.3 to 4 Gm.).</td>
</tr>
<tr>
<td>Mistura Glycyrrhizae Composita (3 per cent. of extract, with wine of antimony, paregoric, sweet spirits of niter, syrup, and mucilage of acacia), ...</td>
<td>2 to 6 fl. dr. (8 to 24 mils).</td>
</tr>
<tr>
<td>Glycyrrhizinum Ammoniatum, ...</td>
<td>5 to 15 gr. (0.3 to 1 Gm.).</td>
</tr>
<tr>
<td>Pulvis Glycyrrhizae Compositus (23.6 per cent., with senna, washed sulphur, oil of fennel, and sugar), ...</td>
<td>$\frac{1}{2}$ to 2 dr. (2 to 8 Gm.).</td>
</tr>
<tr>
<td>Elixir Glycyrrhizae.</td>
<td></td>
</tr>
</tbody>
</table>

230a. **EXTRACTUM GLYCYRRHIZA—Extract of Licorice.** Made by evaporating the aqueous extract of the root. It is found in market in black, brittle, cylindrical rolls about 150 mm. (6 in.) long; flexible when warm, but when dry breaks with a brittle, conchoidal fracture, showing a glossy surface; odor characteristic; taste sweet. It yields a brown powder. It contains glycyrrhizin, both free and combined with ammonia, to which combination its sweetness is due, glycyrrhizin itself being almost tasteless. It is an excellent demulcent, the presence of a small piece in the mouth often allaying cough by coating and thus protecting the irritated membrane. Not less than 60 per cent. of the extract of glycyrrhiza should be soluble in cold water. Dose: 15 to 60 gr. (1 to 4 Gm.). Ash, not more than 6 per cent.
231. **ABRI RADIX.**—INDIAN LICORICE. The root of *A'brus precato'rius* Linné, indigenous to India, naturalized in most tropical countries. Reddish-brown, twisted pieces, having a thin bark, and a medullium composed of alternating zones of porous wood-bundles and parenchyma, traversed by medullary rays. Inodorous; taste bitter, afterward sweetish. It is thought to contain glycyrrhizin, and is used as a demulcent like glycyrrhiza.

232. **ABRI SEMEN.**—PRAYER, BEADS. JEQUIRITY. The seeds of *A'brus precato'rius* Linné. Subglobular, about 5 to 8 mm. (1/5 to 1/3 in.) long, scarletred, glossy, with a black spot at the hilum; inodorous; taste bean-like. They contain two proteids, paraglobulin, and albumose, which are irritating to the eyes. A weak infusion of the seed is used in granular ophthalmia.

233. **BAPTISIA, N. F.**—WILD INDIGO. The root of *Bapti'siatincto'ria* R. Brown. Habitat: United States. It contains baptisine (acrid, poisonous), baptisin (a bitter glucoside), and baptin (a purgative glucoside). Chiefly used for its antiseptic properties, in lotion and ointment, although it acts also as an emetic and cathartic. Dose: 5 to 15 gr. (0.3 to 1 Gm.).

234. **ERYTHROPHLOEUM.**—SASSY BARK. A poisonous bark from *Erythrophloe'um guineens'e* Don, used as an ordeal in Africa, where the tree grows, and therefore sometimes called doom-bark. It is in thick, warty, curved pieces, reddish-brown, fissured. Inodorous; taste astringent and bitter. It contains an alkaloid, *erythrophleine*, which gives it an action on the heart similar to digitalis; also astringent, emetic, diaphoretic, and analgesic. Dose: 5 to 15 gr. (0.3 to 1 Gm.).

Preparation of Erythrophleine.—Treat concentrated aqueous solution of the alcoholic extract of the bark with ammonia and exhaust the mixture with acetic ether. The alkaloid is yielded on evaporation.

235. **CERCIS CANADENSIS** Linné.—REDBUD. The bark of this indigenous tree has been recommended as a mild, non-irritating, but active astringent in diarrhea and dysentery. Also used as a local application to mucous membranes. Dose of fluidextract: 15 to 60 drops (1 to 4 mils).

236. **SARACA INDICA** Linné.—ASOCA. (Bark.) Much employed by the Hindoo physicians as a sedative in the treatment of uterine affections; it is also astringent. Dose of fluidextract: 15 to 60 drops (1 to 4 mils)
237. PISCIDIA.—JAMAICA DOGWOOD. The bark of Piscidia erythrina Jacquin.
Habitat: West Indies. Quills or curved pieces about 4 mm (1/6 in.) thick; externally of a
dark, yellowish-gray color, ridged longitudinally. Odor opium-like when broken.
Taste bitter, acrid, producing a burning sensation in the mouth. Used as a mild
soporific for children and aged persons, and for those not able to bear a strong
narcotic like opium. Dose: 15 to 45 gr. (1 to 3 Gm.).

238. HÆMATOXYLON, N.F.—HÆMATOXYLON

LOGWOOD

The heart-wood of Haematoxylon campechianum Linné Usually found in
commerce in the form of deep, brownish-red chips.—When the surface has a
greenish metallic luster, the wood has undergone fermentation and should be rejected.
Odor slight; taste sweetish, astringent.
CONSTITUENTS.—**Haematoxylin**, $C_{16}H_{14}O_6$, sweet, colorless crystals, giving to the wood its characteristic colors by the combined action of the oxygen of the air and the alkaline bases existing in the wood; it is readily soluble in hot water and alcohol, sparingly in cold water; by the action of ammonia and oxygen in the air dark purple scales of haematein, $C_{16}H_{12}O_6$, are formed, often observable as the fine greenish hue upon logwood chips. This principle gives a blue color with alkalies. Haematoxyylon also contains tannin, fat, resin, and a trace of volatile oil. With an alkali haematoxyylon gives a purple color, brazil-wood a red color, and red saunders is not affected.

Preparation of **Haematoxylin**.—To ethereal extract add water and allow to crystallize; add a little $H_2SO_3$ or sulphite to prevent oxidation. Yellowish prisms of sweetish taste, violet-blue, with alkalies. Soluble in alcohol and water. Sunlight causes a red color.

ACTION AND USES.—A mild astringent. Dose: 30 to 60 gr. (2 to 4 Gm.), in decoction or extract. A solution of haematoxyylon as a staining fluid in microscopy is one of the most useful, as it stains both lignified and cellulose tissue, but not suberin or cutin. It is also one of the very best nuclear stains.

PREPARATION: Ext. Haematoxyli, N.F. Dose, 1 Gm. (15 gr.).
239. SANTALUM RUBRUM.—RED SAUNDERS

RED SANDALWOOD

The heart-wood of *Pterocarpus santalinus* Linné.

BOTANICAL CHARACTERISTICS.—A large tree with dark red, heavy, and compact wood; a reddish juice exudes from its bark. Racemes axillary; flowers yellow, streaked with red. Legumes orbicular.

HABITAT.—Madras.

DESCRIPTION OF DRUG.—In commerce usually in deep reddish-brown raspings or small chips, or a coarse powder; tasteless and nearly odorless. The wood consists mostly of the lower parts of the stem, and thick roots, imported in irregular logs of various sizes, usually deprived of the bark, and externally of a dark-brown color; internally of a rich red color, showing in transverse sections circles of a lighter tint. Used in
Compound Tincture of Lavender.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

CONSTITUENTS.—The most important constituents are the red coloring matter, santalin, in needles, soluble in alcohol, ether, acetic acid, and alkaline solutions, but insoluble in water, and only slightly soluble in boiling water and santalic acid, C$_{15}$H$_{14}$O$_{5}$. The yellow ethereal solution is turned to violet by alkalies. Santol, pterocarpin, and homopterocarpin are also constituents. Ash, not to exceed 3 per cent.

Preparation of Santalin.—Precipitate alcoholic tincture with lead acetate; decompose this precipitate with H$_{2}$S in presence of alcohol and evaporate. Red needles are obtained, which are inodorous, tasteless, resinous; soluble in the alkalies with violet, and in ether with yellow color.

ACTION AND USES.—Of no value medicinally. Used in pharmacy for coloring preparations.

OFFICIAL PREPARATION.

Tinctura Lavandulæ Composita.

240. SENNA.—SENA

SENA

The dried leaflets of Ca'ssia acutifo'lia Delile and C. angustifolia Vahl.

BOTANICAL CHARACTERISTICS.—The acute-leaved senna, C. acutifo'lia, is a leafy shrub 2 to 5 feet high, bearing axillary racemes of yellow flowers. Legume flat, broadly oblong, very slightly curved inward, rounded at the extremities, terminating in an indurated and nearly obsolete style.

SOURCE.—Alexandria senna, exported by the way of Alexandria, is derived from Ca'ssia acutifo'lia, a species growing wild abundantly in upper Egypt, Nubia, etc. India senna (C. angustifolia) is obtained chiefly in Arabia, reaching western ports by way of Bombay and other Indian ports; sometimes called Mocha senna, as originally from that port. The same plant in cultivation yields Tinnevelly senna. The plant yields two annual crops, the best at the close of the rainy season (September), and the other during the dry season. Prepared for market by the natives, who carry it there on camels, where it is cleaned (garbled) and sold.
DESCRIPTION OF DRUG.—Both the Alexandria and the India senna consist of leaflets, a prominent distinction between the two being their size; the former, the acutifolia, is described as follows: Lanceolate or ovatelanceolate, 1.5 to 3 cm. long, 5 to 8 mm. broad; apex acute, mucronate; base unequal, acute; margin entire; upper surface light green, nearly glabrous, midrib sometimes depressed, veins of first order more or less prominent; under surface light grayish-green, midrib prominent, minutely pubescent, especially near the veins; petiole about 1 mm. long; texture coriaceous, fibrous; odor slight; taste somewhat bitter. Powder: Light green; non-secreting hairs 0.1 to 0.2 mm. long, one-celled, thick-walled, the wall of the upper part strongly cuticularized; calcium oxalate crystals rosette-shaped or in monoclinic prisms. The powder of Indian senna (C. angustifolia) is dark green and has relatively few non-secreting hairs. (For fuller particulars of the microscopical distinction of the two powders, see article by the author, “Amer. Jour. Pharm.,” June, 1897, p. 298.) The India senna is by far a cleaner senna; senna should be free from stalks and other inert materials, and from Argel leaves (Solenostem'ma ar'gel, N. O. Asclepiadæ), which are thick, even at the base, and one-veined.

CONSTITUENTS.—The purgative action of senna depends upon a sulphuretted glucoside, cathartic acid, insoluble in alcohol, soluble in water, but rendered partially or wholly inert by prolonged evaporation or boiling of its solution. Senna also contains chrysophan, phæoretin, sennacrol, and glucosennin, C$_{22}$H$_{18}$O$_{8}$; this latter is probably an emodin glucoside. The emodin is said to be identical with that found in Barbadoes and Cape Aloes. The principles giving the odor and taste to senna, also its griping action, are extracted by alcohol, somewhat affecting the cathartic action, however. Ash, not more than 12 per cent. not less than 3 per cent.; insoluble in HCl.

EMODIN TEST.—This test is applied to the emodin-bearing drugs such
as Rhubarb, Aloes, Senna, etc. The tests as applied are practically the same. For Senna it is as follows: Mix 0.5 Gm. of powdered Senna with 10 mils of an alcoholic solution of potassium hydroxide (1 in 10), boil the mixture for about two minutes, dilute it with 10 mils of water and filter. Now acidify the filtrate with hydrochloric acid, shake it with ether; remove the ethereal layer and shake it with 5 mils of ammonia water; the latter is colored yellowish-red.

Preparation of Cathartic Acid.-Rhubarb or senna may be treated separately as follows: Moisten the drug with alcohol. Macerate 48 hours and percolate with strong alcohol till exhausted, to remove chrysophanic acid, resin, etc. Exhaust the marc with 60 per cent. alcohol. Evaporate the percolate at 50°C. to syrup, with constant stirring. Precipitate extract with 85 per cent. alcohol and filter to remove gum. The filtrate, after evaporating to a syrupy consistence, is added to a large excess of absolute alcohol. The brown precipitate thus produced is spread on glass to dry. It is then in light, shining scales.
ACTION AND USES.—A prompt and efficient cathartic. Its griping action may be prevented by combining it with an aromatic and one of the alkaline salts, or, as before stated, by first extracting the griping principle with alcohol. Dose: 2 to 8 dr. (8 to 30 Gm.).

241. CASSIA MARILANDICA Linné.—AMERICAN SENNA. (Leaflets.) Oblong lanceolate, about 25 mm. (1 in.) in length, mucronate at the apex and short-stalked at base; lower surface lighter green than upper surface. They have a weaker odor and taste than senna, but have similar medicinal properties, their action depending upon the same principle, cathartic acid.

242. MELILOTUS, N.F.—SWEET CLOVER. The flowering tops of Melilotus officinalis Willdenow. The small yellowish or white flowers are in a close, rounded raceme on an angular stem; leaves serrate, trifoliate; odor fragrant, honey-like; taste aromatic and bitter. They contain meliloto (a fragrant volatile oil), coumarin (the aromatic principle of tonka), cumaric acid, and melilotic (hydrocumaric) acid, having a honey-like odor. An infusion is used as a stimulant and antispasmodic in whooping-cough, but it is generally used as a local anodyne in poultices.

243. TRIFOLIUM PRATENSE Linné (Trifolium, N.F.).—The flowering tops of this, our common red clover, are now being used quite extensively as an alterative; they are also deobstruent and sedative in whooping-cough.

243a. TRIFOLIUM REPENS.—WHITE CLOVER. The tops are used in whooping-cough and other spasmodic affections, in the form of infusion.

244. STYLOSANTHES ELATIOR Swartz.—PENCIL PLOWE. This herb is much used in domestic practice as a uterine sedative and tonic. The fluidextract is not miscible with water. Dose of fluidextract: 10 to 20 drops (0.6 to 1.3 mils).

246. SCOPARIUS, N.F.—SCOPARIUS

BROOM

The dried tops of *Cytisus scoparius* (Linné) Link. Habitat: Europe and Asia.

DESCRIPTION OF DRUG.—**Thin, flexible, branched twigs**, pentangular and winged, nearly smooth, and of a dark greenish-brown color; as found in the market they are usually free from the small trifoliate leaves. Odor slight, stronger when bruised; taste **very bitter**.

Powder.—Greenish-brown. Characteristic elements: Sclerenchyma with bast fibers, long, thick-walled, associated with crystal fibers containing calcium oxalate prisms; ducts, spiral, annular, and reticulate; trichomes, non-glandular (0.5 to 0.7 µ in diam.), thick-walled, yellowish, one-celled; pollen, brownish; grains, oval.

---

Sayre’s Materia Medica part III - Page 13
CONSTITUENTS.—A neutral crystalline principle, **scoparin**, \( C_{20}H_{20}O_{10} + 5H_2O \), to which the diuretic action is due, and the colorless, volatile, liquid alkaloid, **sparteine**, \( C_{15}H_{26}N_2 \), acting as a powerful cardiac tonic; this is oily, very bitter, soluble in alcohol, chloroform, and ether; it has been made official as the salt, sparteinae sulphas. Prisms freely soluble in water. Oxidation products, such as oxysparteine, \( C_{15}H_{24}N_2O \), produce an increase of heart activity, while dioxysparteine, \( C_{15}H_{26}N_2O \), produces an inverse effect upon the heart. Sparteine has an anilinelike odor.

Preparation of Scoparin.—Allow a concentrated decoction of broom-tops to gelatinize; express and purify the jelly-like mass by repeated solution in hot water, and finally in hot alcohol.

Preparation of Sparteine.—Extract plant with acidulated water and distil concentrated liquid with NaOH. A colorless oily liquid, forming crystalline salts. Sulphate official.

ACTION AND USES.—Scoparius is a reliable diuretic and laxative in small doses of 10 to 30 gr. (0.6 to 2 Gm.), and is an efficient remedy in dropsy. Dose of sparteinae sulphas: \( \frac{1}{8} \) to 1 gr. (0.0081 to 0.065 Gm.). Used to regulate heart action.

247. CASSIA FISTULA, N.F.—CASSIA FISTULA

PURGING CASSIA

The dried fruit of **Cassia fistula** Linné.

BOTANICAL CHARACTERISTICS.—Tree from 20 to 50 feet high, with showy racemes 1 to 2 feet long, of bright yellow, fragrant flowers, followed by cylindrical pods of the same length. Legume woody, indehiscent. Tropical, extensively cultivated.

DESCRIPTION OF DRUG.—Cylindrical pods or legumes 450 to 600 mm. (18 to 24 in.) long and about 25 mm. (1 in.) in diameter, with a blackish-brown, woody pericarp; indehiscent, but with two smooth sutures or bands on opposite sides running the whole length of the pod, and showing the union of the two valves. The dorsal band is marked with a fineridge, while the ventral band is seemingly divided into two by a shallow, longitudinal groove. **The interior of the pod consists of numerous** (25 to 100) transverse cells, each containing a single, flattish, glossy, red-brown seed, imbedded in a
sweet, blackish-brown pulp; odor prune-like.

CONSTITUENTS.—The pulp, which is the part used, consists mainly of sugar (about 60 per cent.), with mucilage, pectin, albuminoids, and organic salts.

ACTION AND USES.—A mild laxative, generally combined with other mixtures. Dose: 1 to 8 dr. (4 to 30 Gm.).

248. CERATONIA.—ST. JOHN'S DREAD. The fruit of Ceratoniasil'iqua Linné. Habitat: Southern Europe. Broad, flat pods, brown and glossy, divided into six to twelve transverse cells, in each of which is a sweet, black pulp having a single seed imbedded in it. This pulp is used as a laxative and demulcent, but chiefly as an ingredient in expectorant mixtures.

249. TAMARINDUS, N.F.—TAMARIND

TAMARIND

The preserved pulp of the fruit of Tamarindusindica Linné (the Indian date).

A tough, reddish-brown mass, made adhesive by the syrup in which the fruit is preserved. This preserved pulp consists of a fibrous or stringy mucilaginous mass, the thin membranous epicarp (the pericarp being removed), and numerous large, somewhat quadrangular, brown seeds, each inclosed in a tough membrane; inodorous; taste sweetish and acidulous.

CONSTITUENTS.—Tartaric acid and acid potassium tartrate, with traces of citric and malic acids. These organic salts amount to about 10 per cent.

ACTION AND USES.—Laxative and refrigerant, in confection of senna. Dose: 1 to 8 dr. (4 to 30 Gm.).

250. DIPTERYX.—TONKA BEAN. The fruit of a large tree, Dip'teryx odora'ta Willdenow, growing in Guiana. Oblong, flattened, rounded at each end, 37 to 50 mm. (11/2 to 2 in.) long; pericarp thin, wrinkled, of a dark-brown color, somewhat glossy, and often covered with small, white crystals of coumarin; internally oily, pale brown; odor fragrant, similar to vanilla; taste aromatic and bitter. Its odor is due to the aromatic, crystalline principle coumarin. Used as a flavor, as an adulterant of vanilla, and to flavor cigars.

250a. COUMARINUM.—COUMARIN. The anhydride (C₆H₄(CH)₂OCO =146.05) of ortho-oxycinnamic acid, occurring naturally in Tonka, Melilot and other plants, or prepared synthetically, N.F.

251. FŒNUM GRÆCUM.—FENUGREEK. The seeds of Trigonel'la foenum-græ'cum Linné. Habitat: India and the Mediterranean Basin. Brownish or yellowish, rhomboid seeds, about 3 mm. (1/8 in.) in diameter, often wrinkled or distorted. They are divided into two equal lobes by a deep furrow running from the hilum on the sharper
edge, diagonally across the sides. Odor peculiar, characteristic; taste mucilaginous and bitter. Used mostly as a demulcent in condition-powders.

252. PHYSOSTIGMA.—PHYSOSTIGMA

CALABAR BEAN

The ripe seed of Physostig'ma veneno'sum Balfour, yielding, by official assay, not less than 0.15 per cent. of alkaloids of Physostigma.

BOTANICAL CHARACTERISTICS.—A lofty, half-shrubby, twining plant, obtaining its name from its peculiar footed stigma. Leaves trifoliate, leaflets ovate. Flowers purplish-pink, in axillary racemes. Legume about 7 inches long.
HABITAT.—Africa.

DESCRIPTION OF DRUG.—About the size of a pecan nut, oblong, some what flattened, and kidney-shaped, invested with a light to deep chocolate-brown testa. Along its entire convex edge there extends a prominent black furrow, bordered on each side by a reddish ridge, and traversed the entire length by the raphe as a little ridge in the center. This raphe is terminated at one end by a small funnel-shaped depression, the micropyle. Exalbuminous, embryo large, the cotyledons are concavo-convex, the concave surfaces inclosing a rather large cavity, thus enabling the bean to float upon water. Nearly odorless; taste bean-like, afterward acrid. Spurious calabar beans have been called “calibeans” in European commerce, hose occurring the most frequently belonging to the following species: Entada scandens, E. gingalobium D. C., Mucuna urens D. C., and seeds of oil palms, Elaës Guineensis. E. H. Holmes called attention to certain specimens of calabar beans of commerce bearing a close resemblance to the genuine beans. They were longer, of circular cross-section, and the hilum did not extend the full length of the beans. They also differ chemically, as upon touching the cotyledons with a solution of potassa a permanent yellow tint was produced, and upon treating the spurious article similarly a deep, almost orange, color is formed, turning to a greenish hue. It has been found that the ordinary test-reagents for alkaloids are so sensitive for physostigmine (eserine) that one one-millionth part of a gram may be recognized. The poisonous qualities reside in the seeds, especially in the cotyledons. It has been ascertained that the leaves and stems are not poisonous.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Physostigmine, C_{15}H_{21}N_{3}O_{2} (also known as eserine), contracting the pupil of the eye; calabarine, a tetanizing principle, a derivative of physostigmine; eseridine, C_{15}H_{23}N_{3}O_{3} (producing purgation); and physosterin, a neutral principle closely related to cholesterin. These principles are soluble in alcohol. Physostigmine is amorphous, tasteless, reddened by potassa,
soda, and lime when exposed to the air, due to absorption of oxygen. The drug sometimes contains over 0-15 per cent. of the alkaloid Physostigmine. Ash, not exceeding 3 per cent.

Preparation of Physostigmine (Eserine).—Treat powdered drug (mixed with 1 per cent. tartaric acid) with water. Shake out coloring matter with ether, make aqueous solution alkaline with an alkaline bicarbonate, and shake out alkaloid with ether. Evaporate ethereal solution.

Preparation of Eseridine (Calabarine).—Precipitate the alkaloid from the liquid from which physostigmine has been separated by lead subacetate and ammonia;

Fig. 131.—Physostigma venenosum—Portion of plant and fruit.

Sayre's Materia Medica part III - Page 18
evaporate the filtrate, treat the residue with alcohol, precipitate with phosphotungstic acid, and decompose with baryta. It is converted into physostigmine by hydrolysis.

Preparation of Physosterin.—Exhaust beans with petroleum ether and evaporate solvent.

ACTION AND USES.—Physostigmine is used in medicine chiefly for three purposes: as a depressant for the spinal cord; as a stimulant to the intestinal muscles; and to contract the pupils. As a motor depressant physostigmine is useful in the treatment of tetanus and strychnine poisoning. Its greatest value in internal medicine is as a stimulant to intestinal muscles in paralytic forms of colic, but especially in chronic constipation in conjunction with cathartic drugs.

Physostigmine stimulates the secretory nerve-endings of glands and the nerve-endings of striated and smooth muscle. It therefore antagonizes the effects of atropine and curare.

If a drop of 1:200 aqueous solution of eserine is placed in the eye, contraction of the pupil begins in one or two minutes and reaches its maximum in one-half to one hour.

When the alkaloid calabarine is present in excess in the drug, and is taken in overdose, convulsions develop. Dose of drug: 1 to 4 gr. (0.065 to 0.25 Gm.).

Official Preparations.

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physostigmine Salicylas</td>
<td>( \frac{1}{20} ) to ( \frac{1}{20} ) gr. (0.0005 to 0.00216 Gm.).</td>
</tr>
<tr>
<td>Extractum Physostigmatis</td>
<td>( \frac{1}{10} ) to ( \frac{1}{2} ) gr. (0.0064 to 0.0324 Gm.).</td>
</tr>
<tr>
<td>Tinctura Physostigmatis (10 per cent.)</td>
<td>10 to 40 mg (0.6 to 2.6 mils).</td>
</tr>
</tbody>
</table>

253. MUCUNA.—COWAGE, OR KIWACH, the Hindustan name, vulgarly corrupted into cow-itch. The hairs from the pods of *Mucuna pruriens* De Candolle, a high-climbing plant growing in tropical Africa, America, and India. These hairs are about 3 mm. (\( \frac{1}{8} \) in.) long, stiff, brown-red, and readily penetrate the skin, causing violent itching. Detached from the pod (which forms an article of diet in India) by dipping it in honey and then scraping. An electuary is used in doses of a teaspoonful to a tablespoonful. Cowage acts as an anthelmintic mechanically, penetrating the bodies of the worms and thus irritating and dislodging them.

254. ARAROBA.—GOA POWDER. A mixture of neutral principles obtained from radial fissures in the wood of a Brazilian tree, *Andira araroba* Aguiar. This powder
is of a light yellow color, with a somewhat earthy appearance, turning dark brown or
purplish on exposure; somewhat crystalline, rough, and mixed with pieces of wood-
fiber; inodorous and very bitter. It consists chiefly of chrysarobin (Chrysarobinum).
Used externally, in ointments, in skin diseases caused by fungi.

255. ACACIA.—ACACIA
GUM ARABIC

A gummy exudation from Acacia senegal Willdenow and of other species of Acacia.

BOTANICAL CHARACTERISTICS.—A small tree about 20 feet high, with a gray bark. Leaves bi-pinnate. Flowers pale yellow, in dense spikes. Legumes broad, three to four inches long.

HABITAT.—The acacia tree forms dense scrubby forests in the sandy regions watered by the Senegal, and in Abyssinia and Kordofan.

DESCRIPTION OF DRUG.—In roundish, brittle tears or broken fragments about the size of a pea, or larger, with an opaque appearance, due to the numerous fissures. Inodorous; taste mucilaginous and insipid. Soluble in water, forming a thick mucilaginous liquid; insoluble in alcohol. The aqueous solution has an acid reaction and yields gelatinous precipitates with subacetate of lead, ferric chloride, and concentrated solution of borax. Oxalates precipitate the calcium base. There are two kinds of “powdered acacia” on the market, the “granulated” and the “finely dusted.” The former is more soluble and less liable to form lumps, and is, therefore, preferable for pharmaceutical purposes.

VARIETIES AND GRADES.—The Kordofan and Senegal gums are the product of Acacia Senegal. The former has been described above. Gum Senegal, deriving its name from the river Senegal, comes in larger tears than the former, varying in color between yellow and yellowish-brown, being less fissured and more transparent. As to the grades of gum, it may be said that the quality entering the market varies exceedingly in its solubility, viscosity of its mucilage, and its color. In the market the grades are designated by numbers, No. 1 being the best carefully selected tears, No. 2 the next best, and so on until several selections have been made, the remaining colored pieces containing impurities being termed “sorts;” but this term is sometimes applied to unsorted gum arabic, often consisting of a mixture of the lower grades. The terms “strong” and “weak” have been applied, designating the quantity of
moisture, the strong being the drier and probably the most soluble; the weak being that which possibly swells in water, does not completely dissolve, and hence yields a relatively small percentage of mucilage.

Mesquite gum is obtained from Prosopis juliflora, found in Southwestern America and South America. Quite abundant in some portions of Texas and New Mexico. It occurs in colorless or amber-brown tears; resembles gum arabic somewhat in fissures; specific gravity, solubility, its behavior to nitric acid, and the amount of ash yielded

Sayre's Materia Medica part III - Page 21
upon incineration (2.1 to 3 per cent.). Its aqueous solution is not precipitated by subacetate of lead, ferric salts, or borax. Acetate of lead, with ammonia added subsequently, yields a gelatinous precipitate. These reactions, however, differ to some extent in different samples.

CONSTITUENTS.—Arabic acid, \( \text{C}_{12}\text{H}_{22}\text{O}_{11} \), combined with calcium, magnesium, and potassium, to the presence of which its solubility is due; boiled with dilute acid it yields arabinose or arabin sugar. A solution of the gum is unaffected by neutral lead acetate. The gum contains about 14 per cent. of moisture and some sugar. Ash, not exceeding 4 per cent.

Preparation of Arabic Acid.—Obtained by adding alcohol to acidified (HCl) mucilage, and drying the precipitate. It yields arabinose in prismatic crystals when boiled with acids and possibly also galactose.

Powder.—Not more than 1 per cent. should be insoluble in water (limit of dirt, etc.), nor should the powder contain more than 15 per cent. moisture.

ACTION AND USES.—Demulcent. Used in pharmacy for suspending insoluble matters in water, as in emulsions, and as an excipient.

OFFICIAL PREPARATIONS.

- **Mucilago Acaciae** (34 per cent.).
- **Syrupus Acaciae** (10 per cent. of acacia)., Dose: 1 to 8 fl. dr. (4 to 30 mils).
- **Pulvis Cretae Compositus** (20 per cent.), used as an excipient.

256. TRAGACANTH.—TRAGACANTH

GUM TRAGACANTH

The spontaneously dried gummy exudation from *Astragalus gum'mifer* Labillardiere, or from other Asiatic species of Astragalus.

BOTANICAL CHARACTERISTICS.—A small, tangled, spiny bush of compact growth, the petioles being converted into long spines. Flowers yellow, in axillary clusters. Legume partially two-celled.
Astragalus gummifer
HABITAT.—Western Asia.

DESCRIPTION OF DRUG.—The flake tragacanth comes in transversely lined, **curved, and contorted bands**, somewhat resembling fragments of oyster shell, but **tough and horny**; color whitish or yellowish, **translucent**. Taste insipid, sometimes faintly bitterish; inodorous. It is difficult of pulverization, made less so, however, by the use of a warm mortar. It does not dissolve in water, but swells up and forms a thick, gelatinous mass.

VARIETIES.—Very narrow bands or strings variously coiled. Tragacanth in sorts-stratified or nodular, conical and subglobular pieces, more of less brown, often adulterated with the gum of the almond and plum trees.

Powder.—Elements of: See Part iv, Chap. I, B.

CONSTITUENTS.—**Traganthin** or **bassorin**, C$_6$H$_{10}$O$_5$, constituting about 43 per cent., swelling up in water, but not dissolving; and **arabin**, the calcium salt of gummic acid, soluble in water, but not identical with the arabin or arabic acid of acacia. Ash, not more than 3.5 per cent.

ACTION AND USES.—Used as a demulcent, but rarely, however, on account of its insolubility. Chiefly used in pharmacy to give consistence to lozenges, etc.

OFFICIAL PREPARATION.

**Mucilago Tragacanthae** (6 per cent.).

257. CATECHU.—CATECHU

An extract prepared from the heart-wood of **Aca'cia cat'echu** Linné.

BOTANICAL CHARACTERISTICS.—Small tree with straggling, thorny branches, and compact, dark red wood. Leaves bipinnate; **petiole** angular, with prickles on its under side. Flowers pale yellow. Legume about three-seeded.

SOURCE.—The tree is common in most parts of India and Burmah, where the export of cutch forms, next to the sale of timber, the most important item of forest revenue. It abounds in the forests of tropical Eastern Africa, but in many places where the tree abounds it is only valued for its wood. In comparatively few regions is any extract manufactured. From Acacia suma, a nearly related species growing in Southern India, catechu is also made. The extract from these two species of acacia furnishes a
variety of catechu, but a catechu formerly prescribed as Catechu pallidum (pale catechu), gambir, is official in the present Pharmacopoeia and is described as follows:

GAMBIR

GAMBIR (CATECHU)

An extract prepared from the leaves and twigs of Ourouparia Gambir (Hunter) Baillon (Fam. Rubiaceae).

Sayre’s Materia Medica part III - Page 25
Irregular masses of cubes about 25 mm. in diameter; externally reddish-brown, pale brownish-gray or light brown; fracture dullearthy, friable, crystalline; inodorous, bitterish, very astringent with a sweetish after-taste.

Not less than 70 per cent. should be soluble in alcohol; the ash should not be more than 5 per cent., and starch should not be present.

CONSTITUENTS.—Mainly catechu-tannic acid, 45 to 55 per cent., which does not produce gallic acid on exposure to air as does the tannin of galls; it is turned blackish-green by ferric salts. Catechin is an interesting principle which, by dry distillation, yields pyrocatechin, or catechol, $C_6H_4O_2$, which, with ferric chloride, gives a dark green color by ammonia changing to violet. Ash, not more than 9 per cent.

*Sayre's Materia Medica part III - Page 26*
Preparation of Catechin.—On allowing the decoction of catechu to stand several days, crude catechin is deposited. This deposit is purified to white silky needles by dissolving in dilute alcohol, washing with ether, and evaporating from hot aqueous solution. It has a sweetish taste, is precipitated by albumen, but not by gelatin.

ACTION AND USES.—A powerful astringent like kino. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

OFFICIAL PREPARATION.

**Tinctura Gambir Composita** (5 per cent., with saigon cinammon 2.5 per cent.), Dose: 15 to 60 drops (1 to 4 mils)

258. KINO.—KINO

The spontaneously inspissated juice of *Pterocar'pus marsu'pium* (Roxburgh).

BOTANICAL CHARACTERISTICS.—A leafy tree 40 to 50 feet high, with reddish-brown bark. Leaflets 5 to 7, coriaceous, dark green, shining, 3 to 5 inches long. Flowers yellowish-white. Legume woody, indehiscent.

SOURCE.—East Indies. We have several varieties other than the Malabar (East India), the official kind as described above namely, African or Gambia kino (*P. erinaceus*), Palas or Bengal kino (*Butea frondosa*), Botany Bay or Eucalyptus kino (*E. amygdalina*), from Australia, and West Indian or Jamaica kino (*Coccoloba uvifera*). These all furnish extractives known as kino.

A new kind of kino from the juice of the bark of several kinds of Asiatic *Myristica* has been noticed, differing from the Malabar by containing, in the crude state, calcium tartrate. By this characteristic it may easily be distinguished from the official and other kinos of the market.

DESCRIPTION OF DRUG.—Small, dark reddish-brown, shining, angular fragments, much lighter and nearly transparent in thin layers. Adheres to the teeth when chewed, and colors the saliva a deep red; odorless; taste sweetish and astringent. The powder is of a brownish-red color.

Powder.—Elements of: See Part iv, Chap. I, B.
CONSTITUENTS.—Kino-tannic acid (colored black-green by ferric salts, in neutral solution; violet by ferrous salts), kinoin, neutral crystalline prisms, pyrocatechin, kino-red, pectin, and ash. Ash, not exceeding 3 per cent.

Preparation of Kinoin.—Boil kino with dilute HCl and agitate clear solution with ether. Evaporate off the ether. Heating this to 266°F., an insoluble amorphous kino-red is obtained.

Pyrocatechin results from the dry distillation of kino, or is obtained by treating kino with ether.

Fig. 132.—Pierocarpus marsupium—Branch.
ACTION AND USES.—A powerful astringent. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

OFFICIAL PREPARATION.

**Tinctura Kino** (5 per cent.)
Dose: 1 to 2 fl. dr 4 to 8 mils).
The oleoresin of *Copai'ba langs'dorfii*¹ O. Kuntze, and of other species of Copaiba.

BOTANICAL CHARACTERISTICS.—Lofty forest trees, natives of Central America, bearing alternate, pinnate leaves. The wood of the trees is replete with oleoresin, sometimes even to bursting.

SOURCE AND COLLECTION.—This oleoresin is derived from several species of copaiba, as *C. officinalis* (Carthagena), *C. langsdorffii* (Sao Paulo), *C. multifuga* (Para). These furnish the several commercial varieties. Obtained by making large augur holes, square or wedge-shaped boxes, into the center of the trunk, where the oleoresin collects. Sometimes these openings are closed or sealed with wax, and of ten the pressure from the high liquid column is said to burst the trunk with a very loud report. A tree may yield from 10 to 12 gallons.

If 4 fluidrams of the above varieties of copaiba be mixed with 1½ fluidrams of aqua ammonia and shaken in a test-tube, the mixture will be clear, but milky if more alkali or fixed oil be present. Maracaibo (Colombia copaiba) is thicker, darker, not always clear. It solidifies, however, with magnesia and contains from 20 to 40 per cent. of the volatile oil.

DESCRIPTION OF DRUG.—A more or less viscid, yellow or light brown, transparent liquid, of about the consistence of olive oil; specific gravity, 0.950 to 0.955 at 25ºC. (77ºF.); it becomes thicker and darker with age, the volatilization and the oxidation of the volatile oil leaving a greater proportion of the soft resin. Odor peculiar, aromatic; taste bitter, acrid, and nauseous.

Para copaiba is a pale, limpid liquid containing from 60 to 90 per cent. of volatile oil. Maranham and Rio Janeiro copaiba are of the consistence of olive oil, and contain a somewhat smaller proportion of volatile oil—40 to 60 per cent. Maracaibo copaiba is dark yellow or brownish, thick, somewhat turbid. It contains from 20 to 40 per cent. of oil of copaiba.

CONSTITUENTS.—*Volatile oil*, upon which its value mostly depends; a bitter principle, *and two resins, copaibic acid*, $C_{20}H_{30}O_2$ (soluble in ammonia and absolute alcohol), and a viscid, non-crystalline resin. Para copaiba contains oxycopaivic acid, $C_2H_{28}O_3$; Maracaibo copaiba, metacopaivic acid, $C_{22}H_{34}O_4$. Copaiba contains no benzoic nor cinnamic.

¹ Sometimes written, incorrectly, lansdorffii (Lloyd).
acids, hence the term balsam is a misnomer.

Preparation of Copaibic Acid.—Mix nine parts of copaiba and two parts of ammonia (sp. gr. 0.95); lower the temperature to 10ºC.; crystals of copaibic acid are then obtained, which agree with abietic acid in composition, but not in properties.

ACTION AND USES.—Stimulant, diuretic, laxative. Its principal action, however, is on mucous membranes. Dose: 15 drops (1 mil), in emulsion.

259a. **OLEUM COPAIBÆ**.—OIL OF COPAIBA. A volatile oil distilled from copaiba. A pale yellowish liquid of an aromatic, bitterish taste, and having the general properties of the oleoresin. It is a pure hydrocarbon having the formula $C_{20}H_{32}$. Dose: 5 to 15 drops (0.3 to 1 mil), in emulsion.

260. **PONGAMIA OIL**.—KURUNG OIL. A deep yellow, or reddish-brown, fixed oil expressed from the seeds of an East Indian tree, *Ponga miagla'bra* Ventenat. It is used by the natives as a local application in skin diseases and rheumatism; especially recommended in pityriasis versicolor, and other cutaneous diseases due to fungous growth.

261. **COPAL**.—GUM COPAL. A resin found as a fossil in Zanzibar, or exuding from various species and genera of trees of the natural order *Leguminosae*, growing in South America, West Indies, and Africa. Yellowish or brownish, irregular masses, often with a wrinkled surface; breaks with a glossy conchoidal fracture; odorless and tasteless. Used in making varnishes.

262. **BALSAMUM PERUVIANUM.**—**BALSAM OF PERU**

**BALSAM OF PERU**

A balsam exuded from the bruised trunk of *Tolui'fera perei'reae* Baillon.

BOTANICAL CHARACTERISTICS.—A leafy tree, with wood containing a liquid balsam. Leaves imparipinnate; leaflets 5 to 11, alternate. Racemes 6 to 7 inches long. Fruit a one-celled, one-seeded pod about $3\frac{1}{4}$ inches long; mesocarp fibrous, the inner part with receptacles of oleoresin.

SOURCE AND COLLECTION.—This valuable tree grows in the wild forests of San Salvador, singly or in groups. The trees, owned by individuals, are carefully guarded. The balsam is collected by loosening the bark with a blunt mallet for some distance in four alternate sections so as not to kill the tree. The loosened bark soon splits; it is set on fire

---

* ...and Burseraceae - MM

**Sayre's Materia Medica part III - Page 31**
and charred, leaving the wood bare. Pockets thus made are covered with rags to absorb the exuding balsam. These, when saturated, are thrown into boiling water, as a means of separating the balsam, which collects at the bottom of the vessel. The annual yield per tree, is about twenty pounds. The fruit yields by expression a white balsam (balsam blanco, white Peru balsam), having a tonkalike odor, which contains a crystallizable resin. The name Myroxylon, as sometimes applied to the balsam, suggests the fact that for a long time it was supposed to be derived from a species of Myroxylon (M. peruiferum).

**DESCRIPTION OF DRUG.**—A brownish-black, oleoresinous, non-viscous liquid, transparent in thin layers, and, by transmitted light, a bright red-brown; heavier than water; odor balsamic and vanilla-like; taste warm, bitterish, afterward acrid.
CONSTITUENTS.—Benzoic and cinnamic acid, cinnamenein (the cinnamate of benzyl alcohol) constituting the greater part, about 60 per cent.; resin 32 per cent., and small quantities of benzyl alcohol, \( C_6H_5CH_2-CH_2OH \); benzylic benzoate, \( C_7H_5(C_7H_7)O_2 \); stilbene, \( C_{14}H_{12} \); styrol, \( C_8H_8 \); styracin; toluol, \( C_7H_8 \).

ACTION AND USES.—Stimulant, expectorant, and stomachic. Externally in ointment. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

263. BALSAMUM TOLUTANUM.—BALSAM OF TOLU
BALSAM OF TOLU

A balsam exuding from incisions in the trunk of Tolui'fera Balsamum Linné.

BOTANICAL CHARACTERISTICS.—A lofty evergreen tree with warty branches; the wood contains a liquid balsam, which exudes when incisions are made. Leaflets 7 to 8, ovate-oblong. Legume indehiscent, with winged expansions and a winged stalk; very broad at apex.

HABITAT.—Venezuela and New Granada.

COLLECTION.—The balsam is obtained by making \( V \)-shaped incisions through the bark and collecting the exudate in small cups or calabashes. It is imported from Venezuela in tins holding from ten to twenty-five pounds. This tapping of the tree continues for eight months, causing the tree to become partially exhausted, showing itself in the lessened foliage. A spurious article has been found on the market. It has a soft consistence, is very sticky, especially when chewed, and under the microscope shows only an occasional crystal. On distilling a portion of this balsam with water, it was observed to contain more of a fragrant volatile oil and less cinnamic acid than the genuine drug.

DESCRIPTION OF DRUG.—A very viscid, yellowish-brown semi-solid, with a sweet, fragrant odor, and feebly aromatic taste. Long kept, it gradually hardens into a more or less solid mass, which is brittle in the cold. Soluble in volatile oils, alcohol, chloroform, glacial acetic acid, and solution of potassa. Readily fusible, and burns with an aromatic odor.
CONSTITUENTS.—A volatile oil (chiefly toluene, $\text{C}_{10}\text{H}_{16}$), a resin, free acids (cinnamic and benzoic), and benzylic ethers of these, principally of the former. If a thin layer of the balsam be viewed under the microscope, numerous crystals of the free cinnamic acid are seen.

ACTION AND USES.—Stimulant expectorant, similar in action but weaker than balsam of Peru. The syrup is used as an agreeable basis for cough mixtures. Dose of the balsam: 8 to 30 drops (0.5 to 2 Mils).
LINACEÆ.—Flax Family

Stems herbaceous; annual or perennial, rarely woody plants closely allied to the mallows, remarkable, however, in having the inner fiber of the bark very tenacious, and for the mucilaginous covering of the seed, in which there is an abundance of drying fixed oil. A few are bitter.

264. LINUM.—LINSEED

FLAXSEED

The ripe seed of *Linum usitatissimum* Linné, including not more than 3 per cent. of other harmless fruits, seeds or foreign matter.
BOTANICAL CHARACTERISTICS.—The common flax is an annual; stem corymbose branched at top. Leaves sessile, linear-lanceolate, smooth. Flowers in a corymbose panicle, with sky-blue petals. Pod about the size of a pea, of 5 united carpels (into which it splits in dehiscence), and 5-celled, with two seeds hanging from the summit of each cell, which is partly or completely divided into two by a false partition projecting from the back of the carpel, the pod thus becoming 10-celled.

HABITAT.—All temperate countries.

DESCRIPTION OF DRUG.—Oblong-ovate, flat, obliquely pointed at one end and blunt at the other. The brown, glossy, polished surface is seen, under the lens, to be marked with fine pits, and to be covered with a transparent mucilaginous epithelium that swells in water. The hilum occupies the slight hollow just below the apex. The embryo is oily, whitish, and inodorous. Taste mucilaginous, oily, and slightly bitter. Flaxseed meal is of a brownish-gray color, and has a slight odor.

CONSTITUENTS.—A viscid yellow fixed Oil, 30 to 35 per cent., proteids 25 per cent., resin, wax, a small quantity of amygdalin. The powder upon extraction with petroleum should yield not less than 30 per cent. of fixed oil, 98 per cent. of which should be saponifiable. An althæa-like mucilaginous substance resides in the epithelial layer, which swells considerably in water. This gummy matter from the investing coat is rapidly imparted to hot water, forming a thick, viscid mucilage, precipitated by alcohol and lead subacetate. The gummy principle is
considered as transformed starch, which latter exists in the immature seed, but is absent in the ripe seed. Ash, not exceeding 6 per cent.

264a. OLEUM LINI.—A yellowish fixed oil expressed (for medicinal use) from the seed without heat, having a slight, pleasant odor, and a bland taste; on exposure to the air it gradually thickens and acquires a strong odor and taste. The oil used in the arts is obtained on a large scale by roasting the seeds before being pressed, in order to destroy the gummy constituents of the coating. It does not congeal above -20°C. (-4°F.). The most characteristic principle in the oil is linolein, $C_{12}H_{28}O_2$, a glyceride of linoleic acid, and considered to be a mixture of two acids-linolic, $C_{18}H_{32}O_2$, and linolenic acid, $C_{18}H_{30}O_2$. The drying property of the oil resides in this constituent.

ACTION AND USES.—The whole seed is used in decoction as a demulcent; ground flaxseed is a favorite farina for poultries; the expressed oil is laxative, and, in combination with lime-water (Linimentum Calcis), is much employed as a protective in burns, etc.

OFFICIAL PREPARATION.
From Oleum Lini.
Linimentum Calcis (equal parts of linseed-oil and lime-water).

265. COCA.—COCA (U.S.P. VIII)
ERYTHROXYLON

The dried leaves of ErythroxylonCo'ca Lamarack (Fam. Erythroxyllaceae,) known commonly as Huanuco (Bolivian) Coca, or of E. Truxillense Rusby, known commercially as Truxillo (Peruvian) Coca, yielding, when assayed by U.S.P. process, not less than 0.5 per cent. of ether-soluble alkaloids of coca.

BOTANICAL CHARACTERISTICS.—Shrub about 6 feet high, with bright green leaves, size and shape similar to those of tea, and white blossoms, which are succeeded by small scarlet berries. When the leaves mature, the branches are stripped and the leafless plant is soon again covered with verdant foliage. The plant is propagated in nurseries from the seed.

SOURCE.—The shrub bearing coca leaves is extensively cultivated on the slopes of the Andes about 2,000 to 5,000 feet above the sea level, in Peru and Bolivia. The province of La Paz in Bolivia produces about the largest crops. That of Bolivia is considered superior to the Peruvian, although the latter country produces double the quantity. In this latter country, especially owing to the European demand, the
cultivation has considerably increased. The annual production reaches the enormous figures of about one hundred million pounds. Two varieties, "Truxillo" and "Huanuco," having different characteristics, come to this market, the former named after the port Trujillo in the northern part of Peru, and the latter from the city of Huanuco, in the central part of Peru. The culture of coca leaves has been tried in other countries, but with questionable results, except, perhaps, on the Island of Java. The plant yields its first crop when eighteen months old, and continues to bear about forty years. There are two pickings — and September; the latter is considered the best and most abundant. The leaves are laid out in a paved drying yard and afterward pressed in drums (tambors) of plantain leaves, the tambor weighing forty pounds net.

DESCRIPTION OF DRUG.—Huanuco Coca.—Greenish-brown to clear brown, smooth and slightly glossy, thickish and slightly coriaceous, stoutly and very short petioled; blade 2.5 to 7.5 cm. long and nearly elliptical, with a very short and abruptly narrowed basal portion and a short point, the margin entire; midrib traversed above by a slight ridge, very prominent underneath, the remaining venation obscure, especially above; underneath, two conspicuous lines of collenchyma tissue run longitudinally on either side of the midrib and about one-third of the distance between it and the margin, the enclosed areola being of a slightly different color from the adjacent surface; odor characteristic; taste bitterish, faintly aromatic, followed by a
numbness of the tongue, lips, and fauces.

Truxillo Coca.—Pale green, thin, brittle and usually much broken, smooth but not shining, shortly and stoutly petioled; blade 1.6 to 5 cm. long and one-third to one-half as broad, obovate to oblanceolate, narrowed from near the middle into the petiole, usually with a slight projecting point at the summit, the margin entire; underneath two irregular lines of collenchyma tissue, usually incomplete or obscure, and frequently wanting, run beside the midrib; odor more tea-like than that of Huanuco Coca; taste and numbing effect similar.

Powder.—Greenish. Characteristic elements: Calcium oxalate of parenchyma in prisms, 3 to 10 µ in diam.; sclerenchyma, bast, and crystal fibers; small papillae on under epidermal cells.

CONSTITUENTS.—A volatile liquid alkaloid, \textbf{hygrine}, and \textbf{cocaine} (C\textsubscript{17}H\textsubscript{21}NO\textsubscript{4}), which has been found to be a compound body represented in a methyl benzoil compound of another organic base, \textbf{ecgonine} (C\textsubscript{9}H\textsubscript{16}NO\textsubscript{3}). There are also present in the leaves \textbf{benzoyl ecgonine}, a methyl compound of which constitutes the \textbf{alkaloid cocaine}. This complex body cocaine is readily decomposed into its component parts, methyl alcohol, benzoic acid, and ecgonine, by heating with HCl. Hydrochloric acid is, therefore, unsuitable for the extraction of cocaine in the process of its manufacture. The percentage of cocaine varies greatly, hence it is important to assay the leaves and its preparations. Assay shows an average of 0.5 per cent. of ether-soluble alkaloids of the leaf.

Preparation of Cocaine.—Exhaust the powdered drug by repercolation with water acidulated with 5 per cent. H\textsubscript{2}SO\textsubscript{4}. Agitate the concentrated liquid with pure coal oil and an excess of Na\textsubscript{2}CO\textsubscript{3}. The oily liquid is then shaken with acidulated water and again precipitated by Na\textsubscript{2}CO\textsubscript{3} in the presence of ether. From the ethereal solution the alkaloid can be obtained on evaporation.

\textbf{COCAINA (U.S.P. IX).—Cocaine. Average dose: 0.015 Gm. (\(\frac{1}{4}\) gr.).}

\textbf{ACTION AND USES.—Stimulant} to digestion, the brain, and respiration. \textbf{Checks the process of wasting}, enabling the laborer to endure a greater amount of physical exertion with a small amount of food. For this purpose the leaves are habitually chewed by the natives. Dose: 15 to 60 gr. (1 to 4 Gm.). Cocaine is a valuable local anaesthetic. Applied to mucous surfaces and injected subcutaneously. Dose: \(\frac{1}{2}\) to 1 gr. (0.0324 to 0.064 Gm.).

Solutions of the alkaloid in olive and castor oil are stable. Cocaine hydrochloride ointment should not be made with lard or vaseline, as it is insoluble in these fats. If the hydrochloride be dissolved in a little water before admixture, a stable ointment is effected.

\textbf{COCA PRÆPARATA, N.F.} 1 to 4 fl. dr. (4 to 15 Mils).
GERANIACEÆ.—Geranium Family

Herbs with opposite or alternate leaves, usually stipulate, simple or compounds. Flowers regular or irregular; carpels prolonged above into beaks terminated by the styles, which give rise to the name Cranesbill, applied to the principal genus.

Fig. 139.—Geranium maculatum—Flowering branch.

266. GERANIUM.—GERANIUM, N.F.

CRANESBILL

Sayre's Materia Medica part III - Page 40
The dried rhizome of *Geranium maculatum* Linné.

**DESCRIPTION OF DRUG.**—**Rough, knotty, cylindrical, horizontal, rhizome,** 50 to 75 mm. (2 to 3 in.) long, and 10 mm. (2/5 in.) thick; longitudinally wrinkled, tuberculated, very hard, and sometimes beset with shriveled, brittle rootlets; externally dark brown; fracture short, reddish-gray, showing a thin bark, several small, yellowish wood-wedges forming a circle near the cambium line, and a large pith; medullary rays broad. The rootlets have a thick bark and a thin central column of fibrovascular tissue. Inodorous; taste astringent.

![Cross-section of Cranesbill](image)

**Fig. 142.—Cross-section of Cranesbill.** *a.* Bark. *b.* Wood-wedge. *c.* Pith. (12 diam.)

Powder.—Grayish-brown. Characteristic elements: Large aggregate crystals of calcium oxalate; ducts porous and reticulate; parenchyma with crystals and starch.

**CONSTITUENTS.**—Tannic (12 to 37 per cent.) and gallic acids, with resin, starch, gum, pectin, and a red coloring matter. Both alcohol and water extract its virtues.

**ACTION AND USES.**—A valuable and pleasant astringent. It has been claimed that the rhizome contains mucilaginous material which, acting as a demulcent, makes a decoction a much more desirable preparation than a simple solution of tannin. The fluidextract is said to be useful in buccal ulcer, etc. Dose: 15 to 30 gr. (1 to 2 Gm.).

**267. IMPATIENS PALLIDA.**—JEWEL WEED. Indigenous herb occasionally used as an alterative and diuretic in infusion. Dose: 1 dr. (4 Gm.). *Impatiens balsamina,* the touch-me-not of the gardens, has the same properties.

**ZYGOPOHYLLACEÆ**

The wood of many species of this order is remarkable for its excessive hardness. The two official drugs from the order are the wood, 75, and resin, 76, of guaiacum.
GUAIACI LIGNUM, N.F.—LIGNUM VITÆ The heart-wood of Gua'iacum officinale and G. sanctum Linné. Greenish-brown, resinous raspings or chips, mixed with yellowish particles of the sap-wood; odor slight, agreeable, increased by heating or rubbing; tastes lightly aromatic, but irritating and persistent after chewing some time. The heart-wood of guaiac is imported in billets or logs and used for turning out various instruments and utensils, the shavings from these being used in pharmacy. The sap-wood is yellowish, the heart-wood dark greenish-brown, hard and heavy, remarkable in that its specific gravity is such as to sink in water. Constituents: The resin (soluble in alcohol and alkaline fluids) is the most important constituent, of which it contains about 26 per cent.; it also contains 0.8 per cent. of bitter, pungent extractive. The wood or chips are turned a bluish-green by the action of nitric acid fumes.
Stimulant, diaphoretic; also a reputed antirheumatic and antisyphilitic. Generally given in the form of compound decoction of sarsaparilla. Dose: 15 to 60 gr. (1 to 4 Gm.).

269. GUAIACUM.—GUAIAC

GUM GUAIAC

The resin from the wood of *Gua'iacum officina'le* Linné and of *G. sanctum*.

SOURCE.—Obtained from natural exudation or from incisions into the trunk, occasionally by boring longitudinally through a billet, placing one end in the fire, and catching the melted resin as it exudes from the hole in the other end; more commonly, however, by extracting the chips or raspings with a boiling solution of common salt.

**Fig. 141.—*Guaiacum*—Cross-section of wood.  *R.* Medullary rays, composed of one, two, and three ranges of cells.  *V.* Closed vessels.  *F.* Ligneous fibers, very much developed and forming concentric zones.

DESCRIPTION OF DRUG.—**Greenish-brown, irregular masses**, containing fragments of wood and bark; brittle, breaking with a glossy fracture; in thin pieces, transparent. The powder is gray when fresh, but **becomes green on exposure**, and blue when in contact with oxidizing agents. Odor slight, balsamic, when heated resembling benzoin; taste slightly irritating.
CONSTITUENTS.—**Guaiacic acid**, β-resin (11.75 per cent.), and guaiac yellow, C_{20}H_{20}O_{7}, soluble in milk of lime; guaiaretic acid, C_{20}H_{24}O_{4}, 11.15 per cent.; **guaiaconic acid**, 50 per cent., and gum and ash in small quantity. Guaiacene, guaiacol, cresol, and pyroguaiacon are obtained by dry distillation. The coloring matter crystallizes in pale yellow or quadratic octahedra having a bitter taste. Ash, not exceeding 4 per cent.

The so-called “guaiacum oil” is obtained by boiling guaiacum resin with solution of sodium carbonate, allowing to cool, filtering, saturating the filtrate with carbon dioxide, again filtering, extracting the oil with ether, and allowing the solvent to evaporate. The product is soluble in water, alcohol, and ether. From the alkaline liquid acids precipitate the yellow coloring matter (“guaiacum yellow”), which imparts a blue color to strong sulphuric acid.

The blue color which guaiacum resin produces with certain oxidizing agents is due to an oxidation product of guaiaconic acid.

**ACTION AND USES.**—Stimulant, diaphoretic, and alterative; also a mild purgative. Dose: 5 to 30 gr. (0.3 to 2 Gm.).

**OFFICIAL PREPARATIONS.**

| Tinctura Guaiaci (20 per cent.) | Dose: 30 to 60 ml (2 to 4 mils). |
| Tinctura Guaiaci Ammoniata (20 per cent.) | 30 to 60 ml (2 to 4 mils). |

**RUTACEÆ.—Rue Family**

To facilitate study, this order has been divided, one of the subdivisions being the sub-order Aurantieæ (see below). The rueworts are remarkable for yielding acrid and resinous principles and volatile oil. Ruta montana, growing in Spain, is so extremely acrid that it raises pustules on the skin of those who gather it. The peduncles and flower of the European Dittany are so laden with volatile oil that the plant ignites at the approach of a lighted candle.

**Synopsis of Drugs from the Rutaceæ**

A. *Barks.*

XANTHOXYLUM, 270.
Angustura, 272.
Ptelia Trifoliata, 273.

B. *Leaves.*

BUCHU, 274.
PILOCARPUS, 275. *Xanthoxyli Fructus, 271.*

C. *Fruits.*

Bela, 277.
Ruta, 270.
XANTHOXYLUM.—XANTHOXYLUM

PRICKLY-ASH BARK

The bark of Xanthoxylum americannum Miller, and of Fagara clava-herculis Linné, known in commerce respectively as Northern Prickly-ash and Southern Prickly-ash.

BOTANICAL CHARACTERISTICS.—The northern prickly-ash, X. americanum, bears its leaves and flowers in sessile, axillary, umbellate clusters; leaflets 2 to 4 pairs, and an odd one, obovate-oblong, downy when young. The southern prickly-ash, F. clava-herculis, bears its flowers in an ample terminal cyme, appearing after the leaves; leaflets 3 to 8 pairs, and an odd one, ovate or ovate-lanceolate, oblique, shining above.

HABITAT.—United States.

DESCRIPTION OF DRUG.—Northern prickly-ash (X. americanum), as found in commerce, is in curved or quilled pieces about 1 mm. $\frac{1}{25}$ in.) thick; the outer surface is of a brownish-gray color, longitudinally furrowed and showing a few yellowish-gray patches of foliaceous lichens, also numerous black dots and a few straight spines. Inner surface is light brown or yellowish; fracture uneven, short; inodorous; taste bitter, pungent, and acrid. Southern prickly-ash (F. clava-herculis) is somewhat thicker and has conical corky projections, with a few spines rising from corky bases. Inner surface free from acicular crystals.

Powder.—Characteristic elements: See Part iv, Chap. 1, B.

CONSTITUENTS.—An acrid green oil, a colorless crystalline resin, sugar, ash 11 to 12 per cent., tannin (small quantity), and a bitter principle which is turned brown by $\text{H}_2\text{SO}_4$.
ACTION AND USES.—Alterative, sialagogue, stimulant, and tonic, its action being similar to that of guaiac and mezereum. The bark chewed is a popular remedy for toothache, giving rise to the synonym, toothachetree. The fluidextract is frequently combined with such alteratives as stillingia, lappa, etc. The berries are used in compound syrup of stillingia (see National Formulary). Dose: 15 to 45 gr. (1 to 3 Gm.).

OFFICIAL PREPARATION.

Fluidextractum Xanthoxyli  Dose: 30 to 60 drops (2 to 4 mils)

271. XANTHOXYLI FRUCTUS, N.F.—PRICKLY-ASH FRUIT. Consists of brownish-red capsules about 4 to 5 mm. (1/5 to 5/8 in.) in diameter, sessile on the thin receptacle (X. clava-herculis), or borne on short stalks (X. americanum); the two valves open when ripe and expose the one or two shining, more or less wrinkled, black seeds; odor aromatic; taste very pungent and somewhat bitter. Stimulant, tonic, and alterative; used in fluidextract of stillingia, N.F. Dose: 15 to 30 gr. (1 to 2 Gm.).

272. ANGUSTURA.—CUSPARIA BARK. The bark of Galipe'a cuspa'ri St. Hillaire. Habitat: Northern South America. Found in the market in flattish, quilled, or channeled pieces about 3 mm. (1/8 in.) thick, and not longer than 150 mm. (6 in.), but usually shorter; externally it is covered with a yellowish-gray, corky layer, which is marked by shallow longitudinal fissures, and in most cases easily removed by the nail; inner surface light cinnamon-brown, often with adhering strips of wood; internally reddish-brown, showing white points due to deposits of calcium oxalate. The tissue of the bark is loaded with oil cells. Odor musty, due to volatile oil; taste bitter and nauseous. Besides volatile oil and resin, the bark contains a bitter principle, angusturin, and four alkaloids, the most important of which is cusparine. Used as an aromatic bitter. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

273. PTELIA TRIFOLIATA Linné.—WATER ASH. Shrub growing in the United States east of the Mississippi. (Root-bark.) It contains berberine. Used as a tonic and antiperiodic, “its mild, non-irritating properties rendering it especially valuable in low fevers attended with gastro-intestinal irritation; this soothing influence causes it to be retained when other tonics would be rejected.” Dose of fluidextract: 15 to 30 drops (1 to 2 Mils).

274. BUCHU.—BUCHU

SHORT BUCHU

The dried leaves of Barosma Betulina (Thunberg) Bartling and Wendland, known commercially as short buchu, or of Barosma Serratifolia (Curtis), Willdenow, known commercially as long buchu, with which may be mixed not more than 10 per cent. of the stems of the plants or other foreign matter.
BOTANICAL CHARACTERISTICS.—Shrubby plant. The characteristics common to the buchus are opposite leaves, small, simple, coriaceous, dotted with pellucid glands. Flower pink (betulina), white (crenulata), solitary on axillary or terminal peduncles. Fruit composed of five follicles, adherent at the axis and dehiscing at the summit.

HABITAT.—Southern Africa, Cape of Good Hope.

DESCRIPTION OF DRUG.—About 15 mm. long, varying between oval and obovate, yellowish-green, apex obtuse, margin crenate or serrate with a gland at the base of each tooth, base more or less wedge-shaped; coriaceous, both surfaces beset with numerous slight projections; odor strong and characteristic; taste somewhat mint-like, pungent and
bitterish. *B. serratifolia* (very narrow, linear-lanceolate) constitute the "long buchu" of commerce. The long buchu (off. in U.S.P. 1890) contains less of the volatile oil. Transverse sections show a subcuticular layer of thickened cells, rich in mucilage, and containing sphaero-crystals. Both kinds usually require careful garbling, as they are often mixed with branchlets, fragments of capsules, and with leaves of allied species. The long buchu is sometimes mixed with the leaves of *Empleurum serrulatum*, but these are still narrower, often longer, and terminate in an acute point, without an oil duct.

*Fig. 146.—Buchu Leaves and Adulterant. A, Leaf of *Empleurum serrulatum*. B, Leaf of *Barosma betulina* (enlarged). C, Leaf of *Barosma serratifolia*. D, Leaf of *Barosma crenulata.*

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—**Volatile oil** is contained in large circular cells just beneath the epidermis of the under surface of the leaf; the short buchu yields the greater per cent. (1 to 1.56 per cent.). On exposure to cold it separates out barosma camphor, which existed in the oil dissolved in a hydrocarbon. The upper surface of the leaves swells up in water, due to a layer of mucilage cells just beneath the surface. The bitter principle is *rutin*; *resin* is also present.

ACTION AND USES.—A mild diuretic in disorders of the urinogenital organs, its action depending upon the volatile oil. In Cape Colony the leaves are employed as a stimulant and stomachic. Dose: 15 to 45 gr. (1 to 3 Gm.).

OFFICIAL PREPARATION.

**Fluidextractum Buchu**, Dose: 15 to 60 drops (1 to 4 mils).
275. PILOCARPUS.—PILOCARPUS

JABORANDI

The leaflets of *Pilocarpus jaborandi* Holmes or of *Pilocarpus microphyllus* Stapf. Yielding when assayed by U.S.P. process not less than 0.6 per cent. of alkaloids.


![Image of Pilocarpus](image-url)
SOURCE, VARIETIES, AND ADULTERATIONS.—The name Jaborandi is a generic one, applied in South America to several plants possessing diaphoretic properties. The shrub, Pilocarpus jaborandi, grows in Brazil in the neighborhood of Pernambuco, known commercially as Pernambuco Jaborandi. P. microphyllus (which yields a large percentage of alkaloid), differs from this in absence of oil from their tissues, by their reticulated venation, etc., is known commercially as Maranham jaborandi. It has been adulterated with species of Piper, which are not pellucid-punctate, with Laurus nobilis, etc.
DESCRIPTION OF DRUG.—Leaves nearly sessile, pinnate, with a terminal leaflet; the leaflets, which come into market separate, are **ovate-oblong, entire**, about 100 mm. (4 in.) long, and 50 mm. (2 in.) broad; short-petiolate; uneven at the base; **slightly revolute at margin**, near which the anastomosing veins form one or two distinct wavy lines; **coriaceous**; dull green, finely marked with small, transparent dots or oil-cells, plainly visible when held up to the light; texture coriaceous, brittle; when bruised a peculiar, rather unpleasant odor is emitted; this odor is predominant in the fluidextract. Taste disagreeable, slightly pungent, and bitter. The leaflets of *P. microphyllus* (Maranham jaborandi) are smaller (2-5 to 4 cm. in length), usually ovate in outline, deeply emarginate at apex. **Alkaloidal content** (chiefly Pilocarpine) of best leaf ranges from 0.5 to 1 per cent.

Powder.—Yellowish-brown. Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—A **volatile oil**, and two alkaloids, **pilocarpine** \((C_{11}H_{17}N_{2}O_{2})\), deliquescent, crystalline, inodorous, and slightly bitter, and **jaborine**, chemically isomeric with, but directly antagonistic to, the first named in physiological action. Pilocarpine is the most active, and yields jaborine and pilocarpidine \((C_{10}H_{14}N_{2}O_{2})\) when heated with HCl; its salts are readily soluble in water; their action is similar to that of nicotine. **Jaborine** \((C_{22}H_{32}N_{4}O_{4})\) is yellow, amorphous, and **resembles atropine in action**; its presence in the commercial pilocarpine explains the different effects following the use of the latter when improperly made. It is therefore very necessary, in using pilocarpine or any of its preparations, to obtain them free from jaborine.

Preparation of Pilocarpine.—To an aqueous solution of acidulated alcoholic extract add alkali and shake with chloroform. From the chloroformic solution the alkaloid is separated by shaking with acidulated (HCl) water, filter, and allow it to crystallize.

**ACTION AND USES.**—Powerfully diaphoretic and sialagogue by stimulating the nerves supplying the glands and involuntary muscular fiber; cardiac depressant. The most important effects of pilocarpine are due to the stimulation of certain nerve terminations. It stimulates the peripheral endings of all the autonomous nerves. The most important effect of the ingestion of a therapeutic dose of pilocarpine is an increase in the secretory activity of nearly all the glands of the body, especially of the salivary and sweat-glands. **Dose:** of drug 5 to 60 gr. (0.3 to 4 Gm.). Pilocarpine is used as a myotic in ophthalmic practice. It has acquired
some reputation in the treatment of diphtheria and croup; frequently administered hypodermically; poisonous. Dose of pilocarpinæ hydrochloridum, 1/8 to 1/12 gr. (0.008 to 0.005 Gm.). Ash, not exceeding 7 per cent.

**OFFICIAL PREPARATION.**

**Fluidextractum Pilocarpi**

Dose: 5 to 60 drops (0.3 to 4 mils).

276. **RUTA.**—RUE. The leaves of *Ruta graveolens* Linné. Habitat: Mediterranean region; cultivated. The whole plant is active, but the leaves are the portion generally employed. They are ternate, the leaflets being obovate-oblong, yellowish-green, thickly dotted with minute, transparent oil-vesicles; odor strong, disagreeable, increased by rubbing; taste bitter, hot, and acrid.

Their medicinal value depends chiefly upon the volatile oil, but there is also present a peculiar coloring matter, rutinic acid, found also in other plants, and an acrid principle, the activity of which is diminished in the dried leaves; the fresh leaves will inflame or even blister the hands if much handled.

**ACTION AND USES.**—Emmenagogue, vermifuge, and diaphoretic. Dose: 5 to 20 gr. (0.3 to 1.3 Gm.) in infusion. The Romans used rue as a condiment, as the Germans still do.

**OLEUM RUTÆ.**—A yellowish-green volatile oil, powerfully irritant; used as a uterine stimulant, emmenagogue, etc. Dose: 2 to 5 drops (0.13 to 0.3 mil).

277. **BELA.**—BAEL FRUIT. BENGAL QUINCE. From *Ægle marmelos* Correa. Habitat: Himalaya Mountains; cultivated in India, where it is employed and considered as a valuable remedy in dysentery and diarrhoea, relieving without causing constipation. Dose: 1 to 2 dr. (4 to 8 Gm.). It is collected when half ripe and dried; usually enters commerce in segments having a smooth, grayish rind, and a hard, reddish, gummy pulp; whitish internally and divided into cells, each of which contains four or five woolly seeds; taste mucilaginous, slightly bitter; nearly inodorous.

**AURANTIEÆ.-SUB-ORDER OF RUTACEÆ.-The Orange Family**

The trees and shrubs which compose this sub-order of Rutaceæ are distinguished from others of the order merely by the character of the fruit. In the Aurantieæ the fruit is an indehiscent, juicy, berry-like fruit, botanically known as hesperidium (lemon, orange, and lime), having a leathery rind, containing numerous oil-glands. The capsular fruit of the rueworts proper is usually dehiscent. The leaves and fruit of both sub-orders abound in minute receptacles of volatile oil. These attain their maximum development in the rind of the orange, lemon, etc. (see Figs. 150 151, 152).
THE ORANGE PRODUCTS

SOURCE.—Universally cultivated in India and widely in tropical regions. The sweet orange was introduced from China by the Portuguese. It has been much improved by cultivation. There are now some fifty varieties in different parts of the globe, these taking the name of the places where cultivated, the sweetest coming from Havana, Florida, and California. Bitter oranges were introduced into Europe from India by the Arabians and were used medicinally from very early times, the bitter fruit being usually termed the Seville or Bigarade orange.

278. AURANTII AMARI CORTEX.—THE RIND. BITTER ORANGE PEEL, the dried rind of the unripe fruit of Citrus vulgaris Risso. Ash, not to exceed 7 per cent.

AURANTII DULCIS CORTEX.—SWEET ORANGE PEEL, the undried outer rind of the ripe fruit of Citrus Aurantium Linné. The orange tree is cultivated in the south of Europe, in the Azores, and in the United States-Southern States and California. It is said to be one of great longevity; thus, a tree in Versailles, known as the "Grand Bourbon," planted in 1421, is still in existence (Mueller).

DESCRIPTION OF DRUG.—Bitter: In narrow, thin bands or in quarters, epidermis brownish-yellow color, outer layer with numerous oil reservoirs, inner layer spongy, light yellowish-brown; odor fragrant; taste aromatic, bitter. The Curacao orange peel is obtained from a variety of the orange cultivated in the island of Curacao. Sweet: Outer surface orange-yellow with numerous oil reservoirs, odor highly fragrant, taste pungently aromatic.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.
CONSTITUENTS.—Volatile oil (contained in vesicles of the epidermis), hesperidin, ash, and a white principle which turns black with ferric salts.

ACTION AND USES.—Tonic, carminative, and stomachic; a valuable addition to preparations of the bitter tonics like gentian. Dose: 15 to 30 gr. (1 to 2 Gm.).

OFFICIAL PREPARATIONS.

Bitter Orange Peel.

Fluidextractum Aurantii Amari, ............ Dose: 15 to 60 m (1 to 4 mils).
Tinctura Aurantii Amari (20 per cent.), ... 1 to 2 fl. dr. (4 to 8 mils).
Tinctura Cinchonae Composita (8 per cent.), 8.0 mils to 2 fl. dr.
Tinctura Gentianae Composita (4 per cent.), 4.0 mils to 1 fl. dr.
Sweet Orange Peel.

Syrupus Aurantii (5 per cent. of Tinct.), ... 1/4 to 1 fl. oz. (8 to 30 mils).
Tinctura Aurantii Dulcis (50 per cent.), ... Flavoring.
279. **OLEUM AURANTII**—THE OIL. Obtained from the fresh peel of either the bitter or sweet orange. A pale yellow liquid, having a characteristic aromatic odor. Optical rotation should not be more than 95' to the right in a 100 mm. tube, and at a temperature of about 25ºC. (77ºF.). It contains some hesperidin, and an aldehyde geranial.

Oil of Petit-grain is obtained from the small, fragrant, immature oranges (berries about the size of a cherry). Recently, however, the leaves and shoots have been used for this purpose.

Manufacture.—The oils of the fruit of the Aurantieæ are manufactured by subjecting the outer rind to expression, distillation, or, preferably, to the écuelle process. This instrument (the écuelle) is described in most works on pharmacy.

**OFFICIAL PREPARATIONS.**

- *Spiritus Aurantii Compositus* (contains 25 per cent. oil and the oils of lemon, coriander, and anise).
- *Elixir Aromaticum* (1.2 per cent.),

---

*Fig. 151.*—*Citrus vulgaris*—Flowering branch.
280. **AURANTII FOLIA.**—THE LEAF. From *Citrus vulgaris* Risso. Oval, from 50 to 100 mm (2 to 4 in.) long, on a broadly-winged petiole, pellucidunctate; odor aromatic; taste bitter. It is the principal source of *essence de petit-grain*, used to adulterate Oleum Neroli. Stimulant and tonic.

281. **AURANTII FLORES.**—THE FLOWER. ORANGE FLOWERS. The flowers *Citrus vulgaris* and *C. Aurantium*, collected before they are expanded, solely for the volatile oil, which is then most fragrant. Generally used while fresh, in which state they may be preserved for some time by mixing with half their weight of common salt. They are about 12 mm, (1/2 in.) long, with small, cup-shaped calyx and white, rather fleshy petals. Occasionally used as a stimulant and antispasmodic, but principally for preparing orange-flower water and the volatile oil.

281 a. **OLEUM AURANTII FLORUM, U.S. VI—OLEUM NEROLI.** A thin, yellowish, or brownish-yellow volatile oil, very fragrant. Used as a flavor and as a perfume. Neroli is the predominant odor in Farina Cologne.

---

![Image of a citrus plant](image)

*Fig. 152.—Citrus limonum—Branch.*
THE LEMON PRODUCTS

282. LIMONIS SUCCUS—THE JUICE.—LEMON JUICE (Succus Citri, N. F.).
The freshly expressed juice of the ripe fruit of *Citrus medica* Linné (*C. limonum* Risso, U.S.P. 1900). A slightly turbid, yellowish liquid having the odor of lemon, due to the presence of some of the volatile oil from the rind; taste acid, often slightly bitter. It contains about 7 per cent. of free citric acid, also phosphoric and malic acids. Refrigerant and antiscorbutic; used in the form of lemonade, or in effervescing draughts. Dose: 1 fl. oz. (30 mils).

Lemon juice should contain from 7 to 9 per cent. of citric acid. It should be free from added preservatives; preserved by sterilization. For tests see U.S.P. VIII. Lemon juice contains from 0.5 to 1 percent. of gum and sugar.

283. LIMONIS CORTEX—THE RIND.—LEMON PEEL. The undried outer rind of the ripe fruit of *Citrus medica* Linné (*C. limonum*. Risso, U.S.P. IX), removed by grating. The fruit comes from the Mediterranean and tropical regions (see Orange). The outer surface is of a light yellow color and ruggedly glandular from the oil-cells; odor fragrant; taste aromatic and bitterish.

Microscopically, the rind of the lemon resembles that of the orange.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

CONSTITUENTS.—A pale yellow volatile oil (sp. gr. 0.87) consisting mainly of hydrocarbons, citrene (*C_{10}H_{16}*) , cymene (*C_{10}H_{14}*) , also citral (*C_{10}H_{16}O*) , and a compound ether. Hesperidin (*C_{22}H_{26}O_{12}*) , a bitter principle, produces with ferric salts a black color.

Used as a flavoring agent.

OFFICIAL PREPARATION.

**Tinctura Limonis Corticis** (50 per cent.).

284.—OLEUM LIMONIS.—OIL OF LEMON PEEL, OR RIND. A volatile oil obtained by expression from
the fresh lemon peel. It is a pale yellow, limpid liquid, having a lemon
taste and a fragrant odor. It should be protected from light in well-
stoppered bottles. Oil of citral, used in perfumery, is obtained from
Citrus medica Risso, a large oblong fruit with rough surface-known in
England as the citron.

Oil of lemon consists of two isomeric oils, chiefly citrene or limonine,
C_{10}H_{16}, with citral (an aldehyde) and a crystalline product which fuses
at 143º to 144ºC. (289º to 291ºF.), colored yellow by H_2SO_4, and green by
HNO_3. Used principally as a flavor assayed by the official process not
less than 4 per cent. of the aldehydes from oil of lemon calculated as
citral.

ADULTERATION OF THE OIL OF LEMON.—It is adulterated with the
volatile oil of other fruits of the genus Citrus. These are difficult to
detect, odor and taste must be chiefly relied upon.

OFFICIAL PREPARATIONS.

Spiritus Aurantii Compositus (5 per cent.).
Spiritus Amonniae Aromaticus Dose: 30 drops (2 Mils).

285. OLEUM BERGAMOTTÆ.—OIL OF BERGAMOT. A volatile oil obtained by
expression from the rind of the fresh fruit of Citrus bergamia Risso et Poiteau, the
fruit being collected in November or December, still greenish, unripe, but full grown.
By some, the bergamot orange is supposed to be an established hybrid—a product of
cultivation. A greenish or greenish-yellow, thin liquid, having a peculiar, very fragrant
odor, and an aromatic, bitter taste. The color is due to chlorophyll. It is distinguished
from the oils of orange and lemon by forming a clear solution with solutions of
potassium. This oil, so valuable in perfumery, was official in the U.S.P. of 1890, but
was dropped from the list in 1900.

CONSTITUENTS.—By fractional distillation there comes over as the first fraction
at 60º to 65º about 40 per cent. of the oil. This has a lemon odor and consists of
almost pure limonine. The second fraction (10 per cent.), distilling at 77º to 82º,
consists principally of dipentene, C_{10}H_{16}. The third fraction of about 25 per cent.,
distilling between 87º and 91º, consists of linalool, C_{10}H_{18}O. The fourth fraction, 90º to
105º (approximately 20 per cent.), having the pronounced bergamot odor, consists of
linalool (linalyl) acetate, C_{10}H_{17}OC_{2}H_{3}O. It is to this that the peculiar odor of
bergamot is probably due.

286. WHITE ZAPOTE.—The seeds of Casimuroa edulis, growing in Mexico. Used as
a hypnotic in the hospitals of the City of Mexico. Recently introduced in United
States. Dose of fl'ext.: ½ to 9 drops (0.1 to 0.6 mils).
SIMARUBACEAE

Shrubs and trees with scentless foliage; almost confined to the tropics. Leaves generally compound and alternate. The bitter bark and wood are employed in medicine.

287. QUASSIA

QUASSIA

Fig. 154.—Picrasma excelsa—Branch.
The wood of *Picrasma excelsa* (Swartz) Planchon, known commercially as *Jamaica Queen*, or of *Quassia amara* Linné (*Surinam Quassia*).

**BOTANICAL CHARACTERISTICS.**—A tree resembling the common ash, attaining a height of 50 or 60, even 100, feet. Leaves pinnate, with an odd leaflet; leaflets opposite, 4 to 8 pairs. Flowers small, pale yellowish-green, in loose panicles, polygamous. Fruit drupaceous, globose, glossy, black.

**HABITAT.**—Jamaica and other West India islands.

**DESCRIPTION OF DRUG.**—Imported in dense, tough billets, often 300 mm. (12 in.) thick, freed from the thick, tough bark. The yellowish-white or white raspings or chips are usually employed in pharmacy. The tissue consists mostly of prosenchyma, associated with long woodfibers with tapering ends, and ducts which, on transverse sections of the wood, appear as pores; inodorous; taste intensely bitter. Quassia tonic drinking cups are made from the wood on a turning lathe; water poured into them acquires a bitterness, in a few minutes, of which the wood seems inexhaustible.

Quassia amara Linné, Surinam Quassia, comes in much thinner billets, and has a thin,, brittle bark, it seldom reaches our market. It may be distinguished from the Picrasma excelsa (*Jamaica quassia*) by the fact that the medullary rays in the former consist of single rows of cells, while those of the latter consist of three rows each. The cells composing the rays in the *Q. amara* are of equal size, and their radial walls appear wavy in tangential section; whereas the corresponding cells in *P. excelsa* are of variable size and exhibit regular walls in tangential section. The true source of Quassia is said, by some authorities, to be a *simaruba*.

**CONSTITUENTS.**—Picras'ma excelsa contains a bitter neutral principle, picrasmin, Quassia amara, an analogous principle, quassin, both soluble in water, alcohol, and chloroform. The principles can easily be obtained from the precipitated tannate by mixing it with lead carbonate, drying, and extracting with alcohol. They crystallize from alcoholic solution in needles; purified by recrystallization. Quassia contains no tannin, and therefore can be prescribed with salts of iron.

Preparation of Quassin.—Neutralize infusion with NaOH; add tannin to precipitate the neutral principle; heat with lead oxide or lime to decompose precipitate, and...
dissolve out with alcohol. White, opaque, very bitter. Soluble in hot alcohol, chloroform; slowly in water.

Preparation of Picrasmin.—Precipitate tannate with lead acetate, the former obtained by precipitating the neutral infusion with tannin. In needles; very soluble in hot alcohol, chloroform, acetic acid, but sparingly in water.

**ACTION AND USES.**—A valuable simple bitter tonic. Dose: 15 to 60 gr. (1 to 4 Gm.). It is poisonous to insects, a strong infusion being often used as a parasiticide on animals.

**OFFICIAL PREPARATION.**

*Tinctura Quassiae* (20 percent.) Dose: 30 to 60 drops (2 to 4 mils).
288. QUASSIÆ CORTEX.—QUASSIA BARK. The bark of *Picraena excel'sa* Lindley. In flat or curved pieces 5 mm. (1/5 in.) or more thick. The outer surface is of a dark gray color and longitudinally furrowed; inner surface yellowish-white and smooth; inodorous; very bitter. The bark of Surinam Quassia is much thinner. These barks have the same constituents and are used for the same purposes as the wood—as tonics.

289. SIMARUBA.—The root-bark of *Simaru'ba officina'lis* De Candolle. Habitat: Northern South America and West Indies. In curved or quilled pieces about 50 to 100 mm. (2 to 4 in.) long, and 3 mm. (1/8 in.) thick; it is of a yellowish-white color, generally deprived of the yellowish or brownish periderm; inner surface light brown, finely striate; bast coarsely fibrous, tough, flexible, the fibers easily separable; inodorous; very bitter. It contains probably quassin or picrasmin, some resin, and a trace of volatile oil. Tonic, used in dysentery and chronic diarrhea. Dose: 8 to 30 gr. (0.5 to 2 Gm.), in infusion or decoction.

290. CEDRON.—CEDRON SEED. From *Sim'a'ba ce'dron* Planch, a South American tree. These seeds are used by the natives as a remedy for the bite of poisonous serpents and insects. Cerebral sedative, antispasmodic, and antiperiodic; poisonous. Dose of fluidextract: 1 to 8 drops (0.065 to 0.5 mil).

291. AILANTHUS.—TREE OF HEAVEN. CHINESE SUMAC. The bark of *Ailanth'us glandulo'sa* Des Fontaines, a common shade tree. The powder is of a greenish-yellow color, and has a strong, narcotic, nauseating odor. A powerful nervedepressant and antispasmodic, used in asthma, hiccup, twitching of the muscles, epilepsy, etc. When chewed, it produces a general sense of uneasiness, weakness, dazzling, cold sweats, shivering, nausea, etc., similar to that produced by tobacco. These effects depend upon a volatile oil, which is so powerful that persons preparing the extract are often thus affected by the vapor. Dose: 15 to 30 gr. (1 to 2 Gm.).

292. CASCARA AMARGA.—HONDURAS BARK. From undetermined species of *Picram'naea*.—A valuable alterative, claimed to be almost a specific in syphilitic affections; it contains an alkaloid, picramnine. The use of tobacco and alcohol is said to counteract its action. Dose: 30 to 60 gr. (2 to 4 Gm.).

BURSERACEÆ

Tropical trees and shrubs abounding in resinous and oily secretions. Drugs of the order are: Myrrha (294); Olibanum (295); Bdellium (296), and Elemi (297).

294. MYRRHA.—MYRRH

MYRRH

A gum-resin obtained from one or more species of *Commiph'oramyrhha* Engler and other species.

BOTANICAL CHARACTERISTICS.—A shrub forming the chief underwood of the Arabian and African forests along the shores of the Red Sea. Squamose, spinescent branches, with pale, ash-gray, odorous bark; leaves ternate; flowers solitary, greenish; fruit drupaceous, with the persistent calyx attached.

SOURCE.—Myrrh is now imported from the East Indies, where it is brought from Arabia and the northeastern coast of Africa. It is usually imported in chests containing from one hundred to two hundred pounds. The terms Turkish and Indian myrrh are now obsolete. Up to recent times most of the myrrh came from India but now it chiefly comes direct from Aden.

DESCRIPTION OF DRUG.—Irregular masses of agglutinated tears, varying from small grains up to pieces about the size of an egg, or sometimes much larger; of a reddish-yellow to a reddish-brown color, dusty, opaque, waxy, and unctuous. Freshly broken, the shining surface often shows characteristic white marks or streaks. Odor pleasant, balsamic; taste bitter, aromatic. This description applies to the best Turkey-official myrrh. The India variety comes in darker pieces, more opaque, less odorous, and abounding in impurities. Bdellium
and other gummy or resinous substances are of ten mixed with it. False myrrh is the name sometimes given to these other gummy and resinous substances. As it is difficult to detect adulteration when it is in the powdered form, it is best purchased in mass. The best variety yields a brownish-yellow tincture, which acquires a purple tint upon the addition of nitric acid. A tincture which does not show this color reaction betrays an impure article, which should be rejected.

CONSTITUENTS.—A volatile oil, myrrhol (3 to 4 per cent.); a bitter principle; a resin, 35 per cent., and gum, 60 per cent., forming with water a yellowish or brownish emulsion, which deposits a sediment upon standing. Recent investigations of Tschirch and others, have cleared up many obscure points regarding the chemistry of the resins in such drugs as myrrh. An excellent classification of the resins is found in a volume entitled "Pharmacopedia," by White and Humphrey, London (PP. 400, 403) and in Allen's “Commercial Organic Analysis,” (pp. 1-103, vol. iv, 4th edition). Myrrh of good quality should contain not more than 70 per cent. of matter insoluble in alcohol. Ash, not more than 8.5 per cent.

ACTION AND USES.—A stomachic, carminative, and emmenagogue. Used mostly in mouth-washes. Dose: 2.5 to 15 gr. (0.15 to 1 Gm.), in pills and emulsion.

OFFICIAL PREPARATIONS.

**Tinctura Myrrhae** (20 per cent.) Dose: 10 to 60 drops (0.6 to 4 mils).

**Pilulæ Rhei Compositæ.**
295. **OLIBANUM.**—FRANKINCENSE. A gum-resin exuding from incisions into the bark of *Boswel'lia carterii* Birdwood. Habitat: Eastern Africa and Southern Arabia. In tears of various shapes, generally rounded; yellowish or pale brown, thickly covered with a white dust; fracture dull, waxy, pale yellowish or reddish; softens when chewed; odor agreeably aromatic, stronger on heating; taste terebinthinate, somewhat bitter, but not unpleasant. Contains a volatile oil, a gum resembling gum arabic, and a resin, forming with water a pure white emulsion. Rarely used medicinally; mostly used for fragrant fumigations and pastilles, and as an altar incense.

296. **BDELLIUM.**—A gum-resin obtained from *Commiphora mu'kul* Hooker and from *C. africana* Engler. Habitat: (1) East India; (2) Western Africa. (1) Dusty pieces breaking with a dark brown, conchoidal fracture; translucent in thin sections; (2) irregular, dusty tears, breaking with a yellowish to brown-red, waxy, angular fracture. Contains resin, volatile oil, and gum. Odor and taste resemble myrrh. Used for the same purposes.

297. **ELEMI.**—MANILA ELEMI. An oleoresin exuding from incisions in *Cana'rium commu'ne* (?) Linné. Habitat: Philippine Islands. A soft, unctuous substance, colorless when pure, becoming firmer and yellow with age; often contaminated with carbonaceous matter, which renders it grayish or blackish. It has a strong, pleasant odor, like lemon and fennel; taste bitter, disagreeable, and pungent. Contains volatile oil, resin, elemic acid, and breidin, a crystalline principle, soluble in water. Used in plasters and ointments as a stimulant and irritant.

**MELIACEÆ**

Tropical trees, rarely undershrubs, with mostly pinnately compound leaves. The order contains many plants which have acrid, bitter, and astringent properties. None official.

298. **MAREGAMIA ALATA.**—GOANESE IPECAC. (Root.) Habitat: Western India. Expectorant and emetic. Dose: 1 to 3 gr. (0.065 to 0.2 Gm.); as an emetic, 5 to 10 gr. (0.3 to 0.6 Gm.).

299. **COCILLANA, N.F.**—The bark of an undetermined species of *Guarea*, a large Bolivian tree. Expectorant and emetic properties similar to ipecac. Dose of fluidextract: 10 to 30 drops (0.6 to 2 mils). A popular compound expectorant, syrupy, preparation furnishes a much used remedial agent.

300. **AZEDARACH.**—MARGOSA BARK. The root-bark of *Mel'lia azed'arach* Linné. Habitat: China and India; cultivated in Southern United States. Fibrous pieces about 5 mm. (1/5 in.) thick, and 50 to 75 mm. (2 to 3 in.) wide. The outer surface is reddish-brown, with irregular, blackish, longitudinal ridges. The inner surface is yellowish-white to brown, and striated longitudinally; fracture fibrous; inodorous; taste sweetish, acrid, and bitter. If collected from old roots, the bark must be freed from the corky layer. The active principle is a yellowish-white resin. Azedarach was once extensively used in the Southern States as an anthelmintic. Dose: 15 to 60 gr. (1 to 4 Gm.), in decoction.
POLYGALÆ.—Milkwort Family

Plants often with milky juice in roots, low herbs in temperature regions, with leaves mostly simple, entire, dotted, exstipulate. Flowers irregular; sepals 5, the two inner large, petaloid, petals 3, the anterior one larger. Properties: generally bitter (polygala), acrid (senega), or astringent (krameria).

Synopsis of Drugs from the Polygaleæ

A. Roots.
   KRAMERIA, 301.
   SENEGA, 302.

B. Herb.
   Polygala, 303.

Fig. 157.—Krameria triandra—Flowering branch.

Sayre's Materia Medica part III - Page 66
301. KRAMERIA, N.F.—KRAMERIA

Rhatany

The dried root of Krame’riatrian’dra Ruiz et Pavon, and of Krame’riaixi’na Linné and other undetermined species of Krameria. (Fam. transferred to Krameriacæe U.S.P. 1900.)

BOTANICAL CHARACTERISTICS.—A low, woody shrub, with grayish leaves and red flowers. The flowers are solitary in the axils of the upper leaves, shortstalked. The fruit is globular, leathery, indehiscent, about the size of a pea, and covered with reddish-brown, hooked prickles.

SOURCE.—Krameria triandra (Red rhatany) is a native of Peru, the commercial supply being obtained from the southern provinces; abundant about the cities of Huanuco and Lima; shipped from Paytu. Krameria ixina (Savanilla or New Granada rhatany) is yielded by several varieties, as K. tomentosa, St. Hil., an extremely wooly form growing in Colombia, British Guiana, and Northern Brazil; shipped from Carthagena, Santa Marta, etc. Para rhatany, described by Berg, is said to be from K. argentea; grayish-brown color.

DESCRIPTION OF DRUG.—From 10 to 30 mm. (2/5 to 11/5 in.) thick, knotty, and with several thick heads above, and branches below, from which emanate cylindrical roots about 6 to 12 mm. (1/4 to 1/2 in.) thick and from 100 to 400 mm. (4 to 16 in.) long. In commerce the more woody pieces, with short stumpy branches, constitute the largest proportion; the bark is tough and fibrous, dark reddish-brown, scaly, rugged, and about 1 to 2 mm. (1/25 to 1/12 in.) thick; the wood is hard and compact, light reddish-brown in color, and when cut with a knife, presents a shining surface, marked with concentric circles and fine medullary rays. Inodorous; taste very astringent, the bark more so than the wood. Krameria ixina (Savanilla rhatany) is more slender and less knotty, dull purplish-brown, with smooth, closely adhering bark. The roots are less flexuous and less tapering than the Peruvian rhatany and are usually separate, not usually exceeding 12 cm. in thickness, externally purplish-brown or

Fig. 158.—Krameria triandra—Cross-section of root. (18 diam.) A, Cork. B, Thin-walled parenchyma of cortex. C, Xylem. D, Medullary ray. (Photomicrograph.)
chocolate-colored and marked with numerous fissures, the fracture less tough than that of Peruvian rhatany, the bark and wood darker. The bark is more astringent than that of Peruvian rhatany. The yield of aqueous extract should not be less than 9 per cent. The yield of ash should not exceed 5 per cent.

Powder.—Deep red. Characteristic elements: Parenchyma cells of cortex with reddish-brown coloring-matter; starch grains, 20 to 30 µ in diam., 1 to 4 compound; calcium oxalate in prisms and pyramids; sclerenchyma with few short, thick-walled bast fibers. In Savanilla variety the sclerenchymatous fibers, the parenchyma, bast, and ducts, are larger.

CONSTITUENTS.—Kramero-tannic acid (20 per cent.), rhatanin, and rhatanicred (a coloring matter). The tannic acid in a state of purity is perfectly colorless, but accompanying it is phlobaphene, an extractive which gives its solutions a reddish-brown color. Gives a dark green precipitate with ferric salts, a flesh-colored precipitate, with gelatin, and none with tartar emetic. Extracts of krameria should be made with cold water, the solution being evaporated at a low temperature. Boiling water extracts apothem, the presence of which is a detriment to the astringent principle.

ACTION and USES.—A powerful astringent, with some tonic properties. Dose: 5 to 30 gr. (0.3 to 2 Gm.).

302. SENEGA.—SENEGA
SENeka. SENEga SNAKEROOT

The dried root of Polyg'ala sen'ega Linné.

BOTANICAL CHARACTERISTICS.—Stems several, from a thick and hard, knotty root-stock; leaves lanceolate, with rough margins; calyx with 3 sepals, small, greenish, and 2 larger (called wings), colored; flowers white, in a solitary, close spike.

SOURCE.—Almost all parts of the United States east of the Rocky Mountains. It is collected for market in Kentucky and in the states west and southwest of it, and in Wisconsin, and in immense quantities in northern Minnesota. This latter variety is known as northern senega. It is, as a rule, a larger root than the southern; the anatomical and structural differences between the two roots are probably very slight. Polygala alba, Nutt., inhabits Western Texas and Western Kansas, but this variety of senega is not systematically collected for the market as are the roots of Minnesota and Kentucky.
DESCRIPTION OF DRUG.—A contorted root, about 100 mm. (4 in.) long, with a **knotty crown bearing numerous remnants of scaly leaves**. The main root is from 5 to 10 mm. (1/5 to 2/5 in.) thick, fleshy, but void of starch. It varies in color from a light yellow to a dark brown externally; much-branched, the branches spreading, tortuous, longitudinally wrinkled, annulate near upper end; **bark thickish**, inclosing a porous, yellowish wood, but easily separable from it; it
consists of three layers, the inner one excessively **developed on one side, forming a prominent cord or keel on drying**, fracture short when dry. Odor faint, sometimes wintergreen-like; taste sweetish, afterward acrid and nauseating. The liquid preparations of it have a characteristic nauseous odor.

![Image](image_url)

**Fig. 160.—Senega.—Cross-section of Root. (21 diam.) A, Xylem. B, Parenchyma of cortex. C, Cork. (Photomicrograph.)**

Powder.—Characteristic elements: See Part iv, Chap. I, B.

**CONSTITUENTS.**—The acrid principles to which its medicinal action is entirely due, are **polygalic acid**, $\text{C}_{19}\text{H}_{30}\text{O}_{10}$, and **senegin**, $\text{C}_{17}\text{H}_{26}\text{O}_{10}$—two homologues. The distinction between polygalic acid and senegin is mainly one of solubility in alcohol (the former more soluble). Lead acetate precipitates polygalic acid, but does not precipitate senegin. The root also contains a fixed oil, and a small quantity of volatile oil, which is a mixture of valerianic ether and methyl salicylate, resin, malic acid, and sugar. Liquid preparations of senega are apt to become gelatinous, which is ascribed to the presence of pectin compounds; but is very likely, at least in part, due to sapogenin, generated under the influence of acids or other compounds; the jelly is rendered soluble again on the addition of an alkali. The above proximate principles are similar to the saponins. Ash, not exceeding 5 per cent.
ACTION AND USES.—A valuable stimulating expectorant, for which it is generally used; also diuretic, and in large doses emetic and cathartic. It affects the heart like digitalis. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

OFFICIAL PREPARATIONS.

Fluidextractum Senegæ  
Dose: 10 to 30 drops (0.6 to 2 mils).

Syrupus Senegae  
(20 percent. of fl'ext.), Dose: 30 to 60 drops (2 to 4 mils).

Syrupus Scillæ Compositus  
(Fl'ext. senega 8 per cent., Fl'ext. squill 8 per cent., Tartar emetic, 0.2 per cent.), 10 to 60 drops (0.6 to 4 mils).

303. POLYGALA RUBELLA Willdenow.—BITTER POLYGALA. A North American herb, used for its tonic properties. The bitter principle is easily extracted by water and alcohol.

EUPHORBIACEÆ.—Spurge Family

Herbs, shrubs, or trees, usually with an acrid, milky juice, which in some cases yields rubber. A volatile oil is found in the bark of a few species, and a fatty oil is found abundantly in the seeds of other plants, as tiglium and ricinus.

### Synopsis of Drugs from the Euphorbiaceae

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Euphorbia, 305.</td>
<td>Concrete Juices.</td>
<td>Tiguum, 313.</td>
</tr>
<tr>
<td>Euphorbia Ipecacuanha, 305 b.</td>
<td>ELASTICA, 309.</td>
<td></td>
</tr>
<tr>
<td>*Euphorbia Pilulifera, 305 c.</td>
<td>F. Bark.</td>
<td>OLEUM RICINI,</td>
</tr>
<tr>
<td>Mercurialis, 308.</td>
<td>*Cascarilla, 311.</td>
<td>312 a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OLEUM TIGLII,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>313 a.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I. Glands.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kamala, 315.</td>
</tr>
</tbody>
</table>

304. STILLINGIA.—STILLINGIA

QUEEN'S ROOT. QUEEN'S DELIGHT

The dried root of *Stillin'gia sylvatica* Linné.

BOTANICAL CHARACTERISTICS.—Stem herbaceous, 1 to 3 feet high. Leaves alternate, nearly sessile, oblong-lanceolate, finely serrate. Flowers monoecious; in a terminal spike (the fertile flowers at the base), with saucer-shaped glands at the base of each; stamens 2 or 3; style 1; stigmas 3. Capsule 3-celled, 3-lobed, 3-seeded.

HABITAT.—United States, from Virginia to Florida, in sandy soil.
DESCRIPTION OF DRUG.—A subcylindrical root, 300 mm, (1 ft.) long, 25 to 50 mm. (1 to 2 in.) or more thick, slightly tapering and sparingly branched; compact; fracture fibrous; odor distinct, peculiar, stronger and disagreeable when fresh; taste bitterish and pungent, persistently acrid.

The color of the exterior surface varies considerably, due, probably, to the varied character of the soils in which the plants grow. Roughly speaking, the roots would thus be classified into light and dark stillingias. By the accidental removal of their outer bark the pinkish
inner bark is exposed. Transversely the woody cortex is seen to occupy about one-half of the diameter of the root. Around this is disposed the thick bark containing numerous bast fibers separately imbedded in the parenchyma. The cambium line is composed of distinctly marked flat cells. Woody center radiate, through which numerous tracheids, arranged in four or five radiating rows that are quite regular in their disposition.

CONSTITUENTS.—The active principle has not yet been determined; it is probably a volatile principle, as old roots are nearly inert. An acrid resin (sylvacrol, soluble in alcohol and chloroform, insoluble in benzene), volatile oil, fixed oil, resin, starch, tannin, and gum have been separated. The so-called oil of stillingia, as found in the market, is intended to be the ethereal extract, but sometimes possesses very little of the persistent acrimony of the root. Ash, not to exceed 5 per cent.

ACTION AND USES.—An efficient **alterative** and antisyphilitic, usually given in combination, often with sarsaparilla, but more generally in the compound syrup of stillingia. Dose: 15 to 30 gr. (1 to 2 Gm.).
OFFICIAL PREPARATION.

**Fluidextractum Stillingiae**  Dose: 15 to 20 drops (1 to 2 Mils).

305. **EUPHORBIA.**—There are a number of species of this genus yielding medicinal products:

305a. **EUPHORBIA COROLLATA** Linné.—LARGE FLOWERING SPURGE.  (Root.) Long, branched; externally purplish-black, wrinkled; internally whitish or yellowish. The medical virtues reside in the very thick, internally whitish bark, which constitutes about two-thirds of the whole root. Inodorous; taste sweetish, somewhat bitter and acrid. Emetic in doses of 10 to 20 gr. (0.6 to 1.3 Gm.); diaphoretic, expectorant, and cathartic in smaller doses.

305b. **EUPHORBIA IPECACUANHA**.—IPECACUANHA SPURGE.  (Root.) Has medical properties similar to the above. It is of a light brown color externally, with a thick bark inclosing a yellowish or whitish wood. The action of these two drugs is due to a resinous matter. Both are indigenous.

305c. **EUPHORBIA PILULIFERA**, N.F. Linné.—A common herb along the roadsides in Australia, where it enjoys a great reputation for the prompt and complete relief it gives in asthma and pectoral complaints generally. Dose: 15 to 60 gr. (1 to 4 Gm.).

306. **EUPHORBIUM**.—EUPHORBIUM. A gum-resin exuding from one or more undetermined species of *Euphorbia*, ascribed to some leafless, cactus-like plants of Egypt, Arabia, and the East Indies. It occurs in dull brownish-yellow or reddish, rounded pieces of the size of a pea or larger, often pierced with, or inclosing, the spines around which it has hardened on the stem of the plant; almost inodorous, the powder sternutatory; taste mild at first, but afterward intensely acrid and burning. Only used externally, mostly in veterinary practice as a vesicant.

307. **ALVELOZ MILK.**—The milky juice of a Brazilian plant, *Euphor'bia heterodox'a* Müller. It has an action resembling that of papain, and is used in eating out cancerous and other ulcers.

308. **MERCURIALIS ANNUA** Linné.—MERCURY WEED. A European herb, employed from the most ancient times as a purgative and emmenagogue.

309. **ELASTICA.**—INDIA-RUBBER (U.S.P. VIII)

**CAOUTCHOUC**

The prepared milk-juice of *He'vea Braziliensis* Mueller and other species, known in commerce as Para rubber. Large trees containing a milky juice which, on hardening, forms india-rubber. *Ficus elastica*, producing the greatest quantity, has its seeds germinate in the forks of the tree, giving off aerial roots which descend to the ground and form a great many trunks.

*Sayre's Materia Medica part III - Page 74*
HABITAT.—South America and India, the finest quality coming from Brazil.

DESCRIPTION.—Large, flat pieces, or molded into various shapes—balls, hollow, bottle-shaped pieces, etc. When the juice first hardens it is yellowish-brown externally and yellowish-white within, but in the processes of molding and drying it acquires a smoky, blackish appearance; very elastic; odor peculiar. Insoluble in water and alcohol, but soluble in chloroform, carbon bisulphide, and benzine. The common adulterants are the carbonates of zinc and lead; when pure or nearly pure, India-rubber should float in water.

CONSTITUENTS.—The elastic principle has been termed caoutchoucin; it, or a similar principle, is contained in a great number of milky-juiced plants.

USES.—On account of its insolubility it has no therapeutic application, but is extensively used in the arts. Employed in some of the pharmaceutical plasters, e.g., Emp. Elasticum. U.S. IX.

310. LACCA.—LAC. GUM-LAC. A resinous exudation from punctures, made by insects, in the bark of several East Indian trees, and also in plants growing in Arizona and other Western States. The twigs, with their deep reddish-brown incrustations, are called stick-lac. Seed-lac consists of the small, irregular fragments broken off from the twigs. Lump-lac is made by melting the stick-lac, and, after it has hardened, breaking the brown, translucent mass into lumps. Shell-lac or gum-shellac, the most common form, is prepared by spreading the melted lac out in thin layers, which, on drying, form thin, brittle sheets, glossy, more or less transparent, varying from amber to dark brown in color; in packing, these sheets are broken into fragments, in which form shellac is commonly met with in market; odorless and tasteless. Lac contains several resins, laccin (a peculiar principle insoluble in alcohol), and a coloring matter varying in quantity in the different forms; this coloring matter, “lac dye,” is equal to cochineal dyes; it is soluble in water, being obtained from the washings in making the different forms of lac. Lac is not used medicinally, but is extensively employed in the arts for making varnishes and sealing-wax.

311. CASCARILLA, N.F.—CASCARILLA BARK. The bark of Croton elute'ria Bennet. Small broken quills having a grayish fissured cork, more or less covered with white lichen patches, but often partially or wholly removed, showing the dull brown inner bark; inner surface smooth; bast fibers few; fracture short, resinous; odor feeble, stronger when rubbed; when ignited, it emits a strongly aromatic odor, somewhat resembling musk, but weaker and more agreeable; taste warm, aromatic, very bitter. Copalchi bark (see also Aspidosperma, 353) has a cascarilla-like odor, and melambo bark, from Croton Melambo, Venezuela, and other species of Croton, are similar to cascarilla. Constituents: Volatile oil (1.5 to 3 per cent.); cascarrilin (a bitter crystalline principle), tannin, fat, resin, etc. Aromatic, stimulant, and tonic. Once used as a febrifuge as a substitute for cinebona. Dose: 15 to 30 gr. (1 to 2 Gm.).
312. **RICINUS.**—CASTOR-OIL SEED. The seeds of *Ricinu's commu'nis* Linné (Palma Christi), a herbaceous plant about 4 to 6 feet in height, native to India, but cultivated in tropical and warm temperature countries; stems hollow, purplish-red; leaves large, palmately 9-divided, on long petioles, with glands at the apex of the petiole; flowers monoecious, in terminal panicles, the lower ones male, the upper female; male flowers-stamens numerous; female flowers-style 1, stigma 3, colored.
red; capsule covered with prickles, 3-celled, each cell containing one seed.

The seeds are about the size of a bean, oval-oblong, flattened on one side; at one end is a yellowish caruncle from which runs an obscure, longitudinal ridge (raphé) to the opposite end; externally smooth, of a glossy grayish color, mottled with reddish-brown from the removal, in places, of the thin, white pellicle investing the black, brittle testa. Embryo and albumen very oily; cotyledons broad and veined. Inodorous; taste sweetish, then acrid. They contain a fixed oil, 45 to 50 per cent, (Oleum Ricini), and a poisonous principle, ricin, which is left behind in the extraction of the oil, some cases of poisoning have occurred from the ingestion of the whole seeds, symptoms are
violent gastroenteritis and collapse. They are more active, weight for weight, than the oil.

312a. **OLEUM RICINI**.—CASTOR OIL. The commercial fixed oil is extracted in several ways, the finest product being yielded by the process known as cold expression. It is a thick, viscid, transparent liquid with a feeble odor, and a mild, somewhat acrid and nauseous taste, soluble in its own weight of strong alcohol. On standing, it becomes thicker, and deposits a white, crystalline substance. Ricinolein (the glyceride of ricinoleic acid) constitutes the bulk of castor oil, with small quantities of palmitin, stearin, myristin and an acrid principle. A mild and efficient **cathartic**. Dose: \( \frac{1}{4} \) to 2 fl. oz. (8 to 60 mils). Formerly employed in making flexible collodion, 3 per cent.

**ADMINISTRATION.**—Various methods of administration to hide the nauseating taste have been devised. The three-layer method in which the oil is suspended between two layers of flavored watery or alcoholic liquid, is the favorite. For this purpose compound tincture of cardamon, spirit of peppermint, whisky, orange juice, lemon juice, lemonade or beer may be used. “The layers should not be stirred together.” The favorite drug store method is to place some syrup of sarsaparilla in a glass and cause it to foam by adding carbonated water from the soda fountain or by a little tartaric acid and sodium carbonate. Then the oil is poured in without allowing any to get on the edge of the tumbler. “The mixture must not be stirred.” The oil floats between some of the syrup below and foam above, and the whole is drunk without stopping. The oil is not tasted at all. The principle of these methods is to have the mouth and tongue moistened with a pleasant flavored liquid (the top layer), upon which the oil will readily slip down. For infants and children, an emulsion made with acacia and flavored syrup may be employed.—Bastedo.

313. **TIGLIUM**.—CROTON SEED. The seed of *Croton tiglium* Linné, a small tree indigenous to China, but extensively cultivated in India. The fruit is a smooth capsule about the size of a large hazelnut, 3-celled, each containing a single seed. The seeds are from 12 to 15 mm. (\( \frac{1}{2} \) to \( \frac{3}{5} \) in.) long, oval-oblong, resembling castor-oil seeds in shape but somewhat larger, and **quadrangular**, and with the caruncle usually absent; the testa is soft, dull yellowish-brown, generally partially, but occasionally wholly, rubbed off from the black tegmen by friction, giving the seeds a **mottled** or **nearly black** appearance; albumen and embryo yellowish-brown; odor feeble; taste acrid. It yields about 50 to 60 per cent. of an **acrid fixed oil**.
313a. **OLEUM TIGLII.**—CROTON OIL. A rather viscid, pale yellowish to brown fixed oil, with a peculiar, faint odor, and an exceedingly hot, acrid taste, continuing in the mouth for several hours. It consists of the glycerides of lauric, myristic, palmitic, stearic, formic, acetic, crotinic, \( C_4H_6O_2 \), isobutyric, isovalerianic, and tiglinic, \( C_5H_8O_2 \), acids. Saponification value 200 to 215, iodine value 104 to 110. The vesicating properties are due to a croton resin. Purgative principle is insoluble in alcohol. **Drastic purgative**, capable of causing death in excessive
doses. Dose: 1/2 to 2 drops (0.0324 to 0.13 mil), in emulsion. Applied externally in liniment, it is a powerful rubefacient.

314. CURCAS.—PURGING NUTS. The seeds of Cur'cas pur'gans Adanson. Habitat: Brazil, West Indies, and Africa. They resemble croton seeds, but have a dull black, fissured surface and are somewhat milder in action. The purgative principle is ricinoleic acid; they also contain about 40 per cent. of an acrid, colorless fixed oil.

315. KAMALA.—ROTTLELA. The glands and hairs from the capsule of Mallo'tus philippinen'sis Mueller Arg. Official U.S.P. 1890. A brick-red, mobile, finely granular powder, almost odorless and tasteless, with a gritty feeling between the teeth; excessive grittiness, however, indicates a probable adulteration with earthy matter, which may be detected by floating it in water. It is inflammable, flashing up like gunpowder, with a red flame. Under the microscope the powder is seen to consist of depressed globular, transparent sacs, containing numerous red, hood-shaped vesicles, and mixed with colorless hairs. Almost insoluble in water; soluble in alcohol, imparting a deep red color to the solution, from which water throws down a resinous precipitate. Flemingia rhodocarpa Baker or Warrus, a leguminous plant indigenous to Eastern Africa, has been employed as substitute. The powder is coarser than kamala, is deep purple, in a water-bath becomes black, and has a slight odor. The glands are cylindrical or subconical. Constituents: Resins (supposed to be the active principle) and resinous coloring matters, one of which has been isolated and termed rottlerin, C_{22}H_{20}O_{6}. Vermifuge. Dose: 1 to 2 dr. (4 to 8 Gm.).

Preparation of Rottlerin.—Obtained by exhausting with ether or carbon disulphide, evaporating and crystallizing; occurs in yellowish needles; soluble in hot alcohol, ether, benzene, or carbon disulphide; changes on exposure.

ANACARDIACEÆ.—Cashew Family

Trees or shrubs with gummy, milky or resinous juice, often poisonous. Leaves usually compound. Fruit drupaceous, not infrequently having a strong turpentine odor and taste. The seeds of many species yield an abundance of bland oil. Drugs from the order: RhusToxicodendron, 316; Rhus Glabra, 317; Rhus aromatica, 318; Mastiche, 319; Terebinthina Chia, 320; Anacardium, 321; Semecarpus, 322.

316. RHUS TOXICODENDRON.—POISON IVY. POISON OAK. The fresh leaves of Rhus rad'icans Linné. Off. U.S.P. 1890. The leaves are trifoliate, the terminal leaflet ovate, stalked, the lateral ones sessile, obliquely ovate. These leaflets are about 100 mm. (4 in.) in length, with margins entire, or coarsely toothed or indented; odorless; taste bitter, acrid, and astringent. The dried leaves are brittle and papery, of a pale green color. Constituents: The fresh leaves abound in an acrid, milky juice, which blackens on exposure to the air, and in contact with the skin causes inflammation and swelling. The acridity is due to what was formerly termed toxicodendric acid, the vapor of which was said to be the cause of vesicular eruptions, but this principle has been found to be, by Pfaff and Balch, an oil, which was given the name, "toxicodendrol." It is said by some authorities (Bessey) that it is volatile. A. B.
Stevens shows the principle to be a resin, soluble in a mixture of ether and alcohol, which solvent removes completely the poison from the parts affected. Bessey has shown by test upon himself that, to sensitive persons, the poison may be communicated without handling the plant, and concludes that the principle is volatile. They also contain tannin producing greenish precipitates with iron salts, wax, fixed oil, resin, etc.

Preparation of Toxicodendric Acid.—To bruised leaves add Ca(OH)₂; macerate with water; express; add H₂SO₄; distil. The condensed vapor is a very acrid liquid (see above), which causes the characteristic vesicular eruption of ivypoison.

Local irritant and rubefacient. Used in treatment of eczema, but is no longer in vogue. Dose: 1 to 5 gr. (0.065 to 0.3 Gm.).

317. RHUS GLABRA, N.F.—RHUS GLABRA
SUMAC
The dried fruit of Rhus gla'bra Linné.

DESCRIPTION OF DRUG.—Berries (drupes) about 3 Mm. (1/8 in.) in diameter, densely covered with a dark-red down. The sarcocarp (the outer portion of a stone fruit) is composed of two layers, the outer being crimson, and the inner whitish; putamen (stone) flattish, ovoid, smooth. Inodorous; taste acidulous and astringent.

Powder.—Dark reddish-brown. Characteristic elements: Thick-walled cells of testa, porous; many celled trichomes deep red in color; seldom dispensed as powder.

CONSTITUENTS.—The acidity of the fruit is due to the acid calcium and potassium malates present; there are also tannic and gallic acid, a red coloring-matter, etc.

ACTION AND USES.—Astringent and refrigerant. Used as a gargle in the form of decoction or fluidextract. Dose: 30 gr. (2 GM.).

OFFICIAL PREPARATION.
Fluidextractum Rhois Glabrae, (U.S.P. VIII). Dose: 1 to 2 fl. dr. (4 to 8 mils).

318. RHUS AROMATICA Aiton (Var. Trilobata Gray).—SWEET SUMACH. An indigenous bush, with leaves smaller than those of R glabra, and unpleasantly scented. (Root-bark.) It acts as an excitant to the unstriped muscular fiber, particularly of the bladder, and is therefore an efficient remedy in incontinence of urine. Dose: 5 to 30 gr. (0.3 to 2 Gm.).
319. MASTICHE, N.F.

MASTIC

A concrete resinous exudation from Pista'cia lentis'cus Linné. A shrub about 12 feet high. Fruit a small, roundish drupe, brownish-red, produced chiefly in the island of Scio.

DESCRIPTION OF DRUG.—A handsome-appearing resin, globular, somewhat elongated, yellowish, translucent tears about the size of a pea, brittle, and dusty from powder derived from attrition; plastic when chewed; odor balsamic; taste slight turpentine-like and faintly bitter. Soluble in ether and nearly so in alcohol.

Sayre's Materia Medica part III - Page 82
CONSTITUENTS.—Volatile oil 1 to 2 per cent., and two resins, masticic acid (alpha-resin), soluble in alcohol, and masticin (beta-resin), insoluble in alcohol, but soluble in ether.

ACTION AND USES.—Mild stimulant, but rarely used internally. Dose: 30 gr. (2 Gm.). Used as a filling for carious teeth, and for making paints, varnishes, etc., and formerly official in *Pilulæ Aloes et Mastiches*.

320. **TEREBINTHINA CHIA**.—CHIAN TURPENTINE. An oleoresin from *Pista'ciaterebin’thus* Linné, a tree growing on the island of Selo. Incisions are made and the exuding juice is allowed to fall upon smooth stones. It is a greenish-yellow, pellucid, syrupy liquid, hardening to a transparent mass when exposed by the evaporation of its volatile oil; odor fennel-like; taste bitterish. It is used for destroying cancerous growths in which it is claimed to be very efficient. Dose: 5 to 20 gr. (0.3 to 1.3 Gm.), in emulsion.

321. **ANACARDIUM**.—CASHEW NUT. The fruit of *Anacar’dium occidenta’le* Linné. Habitat: North America. Kidney-shaped, about 25 mm. (1 in.) long, invested with a grayish-brown, finely punctate pericarp containing cardol (a reddish-yellow fixed oil, very active and poisonous). The seed is white and consists principally of a bland fixed oil. Vermifuge and escharotic.

322. **SEMECARPUS**.—ORIENTAL CASHEW NUT. The fruit of *Semecar’pus anacar’dium* Linné, growing in Eastern India, a heart-shaped, somewhat flattened nut, about 20 mm. (4/5 in.) long, invested with a blackish-brown pericarp containing a brown, acrid, vesicating oil. Used as a local irritant.

**ILICINEÆ.-Holly Family**

Trees and shrubs indigenous to tropical and temperate climates. Leaves coriaceous, evergreen.

323. **ILEX OPACA** Aiton.—HOLLY. (Leaves.) Petiolate, about 50 mm. (2 in.) long, leathery, smooth; inodorous; taste mucilaginous, bitter, and astringent. They contain a bitter principle, ilicin, and tannin. Demulcent, tonic, and emetic. Dose: 15 to 30 gr. (1 to 2 Gm.).

324. **ILEX PARAGUAYENSIS** Lambert.—PARAGUAY TEA. (Leaves.) Habitat: Brazil and Argentine Republic. Lance-oblong, about 50, mm. (2 in.) long, on a short petiole; surface smooth; margin few-toothed. The maté of the market is a coarse, dark powder, slightly roasted, with a tea-like odor and a bitter, astringent taste. Contains caffeine, giving it properties differing only slightly from tea, for which it is used as a substitute by the natives.

325. **PRINOS**.—BLACK ALDER. WINTERBERRY. The bark of *I'lex verticilla’ta* Gray. Habitat: North America, in swampy thickets. Thin, yellowishgreen fragments,
usually deprived of the grayish or brownish periderm, which, when present, is marked
with whitish patches and black lines and dots; inodorous; taste bitter and slightly
astringent. It contains tannin, wax, sugar, resin, starch, chlorophyll, and a yellow,
amorphous, bitter principle. Used as a tonic, antiperiodic, and astringent. Dose: 15 to
60 gr. (1 to 4 Gm.).

CELASTRINACEÆ.-Staff-tree Family

Small trees and shrubs, sometimes climbing. Leaves alternate, rarely opposite, often
coriaceous. A peculiarity of the flowers is that the perigynous stamens are inserted on
the disk which fills the bottom of the calyx and sometimes covers the ovary. Fruit a
capsule, an indehiscent drupe, or a samara. Seeds furnished with a pulpy, colored,
cupular aril.

326. EUONYMUS, N.F.—EUONYMUS

WAHOO

The dried bark of the root of Euonymus atropurpur'æus Jacquin.

BOTANICAL CHARACTERISTICS.—Tall, ornamental shrub, 6 to 14 feet high;
leaves petiolate, oval-oblong; flowers dark purple, in fours; pods smooth, deeply lobed;
seeds inclosed in a red aril. Ornamental in autumn from its copious crimson fruit,
drooping in long peduncles.

DESCRIPTION OF DRUG.—In quilled
or curved pieces about 2 mm. (1/12 in.)
 thick. The periderm is of an ash-gray
 color, covered with blackish
 patches or ridges, and removable in
 scales from the whitish or yellowish-
brown inner bark; fracture, smooth
 and short. It contains a hygroscopic
 tissue, which readily absorbs moisture,
 thus becoming less brittle; odor distinct;
taste sweetish, bitter and somewhat
 acrid. It is sometimes mixed with
 branches and pieces of the wood.

Powder.—Light brown. Characteristic
 elements: Sclerenchyma consisting of
 long, thin-walled bast fibers; ducts and
 wood fibers sometimes present;
spherical starch grains and rosette-
shaped calcium oxalate crystals also
present.

FIG. 167.—Cross-section of Wahoo bark.
Magnified 15 diam.
CONSTITUENTS.—Its chief constituent of therapeutic value, euonymin, is bitter, amorphous, and precipitated from its solution by phosphomolybdic acid and lead subacetate. This product is not to be confounded with a resinoid of the same name (see below). The bark also contains atropurpurin, asparagin, euonic acid, fixed oil, and albumen.

Preparation of Euonymin.—Add chloroform to a dilute alcoholic tincture and shake; separate chloroformic solution and evaporate; treat residue with ether, then alcohol, and lead acetate; add H₂S to precipitate lead; finally evaporate. Soluble in ether, alcohol, and water. The eclectic resinoid, by this name, is a dried precipitate, resulting when concentrated alcoholic tincture is added to water.

ACTION AND USES—A cholagogue cathartic in doses of 0.8 to 30 gr. (0.5 to 2 Gm.); also tonic and laxative.

OFFICIAL PREPARATIONS.

Extractum Euonymi (From Fl'ext.), Dose: 1 to 5 gr. (0.065 to 0.3 Gm.).
Fluidextractum Euonymi ½ to 2 fl.dr. (2 to 8 mils).

327. Celastrus scandens Linné.—CLIMBING STAFF-TREE. FALSE BITTER-SWEET. Habitat: North America. (Root-bark.) Alterative, diaphoretic, diuretic, and emetic; has been used in chronic affections of the liver. Dose of fluidextract: 1 to 2 fl. dr. (4 to 8 mils).

328. Acer rubrum Linné (Aceraceæ).—RED OR SWAMP MAPLE. The bark of this indigenous maple was the favorite remedy of the Indians for sore eyes; it is a mild astringent.

Sapindaceæ.—Soapberry Family

Trees or shrubs, rarely herbs. Stem with watery juice, erect or climbing. The members of the order are called soapworts because of the fruit of many species containing a saponaceous principle. The flowers are unsymmetrical, racemated, or panicked, the pedicels often changed into tendrils. The order furnishes a variety of dissimilar products, as will be seen in Guarana, 329; Æsculus glabra, 330; Æsculus hippocastanum, 331; Acer rubrum, 328; and Macassar Oil, 332.

329. Guarana

Guarana

A dried paste consisting chiefly of the crushed or pounded seeds of Paullin'ia cupana Kunth, yielding, by the official process, 4 per cent. of caffeine.

BOTANICAL CHARACTERISTICS.—A climbing shrub with alternate, imparipinnate leaves on long stalks, with five oblong-oval, irregularly sinuate-dentate leaflets 5 to 6 in. long and 2 to 3 in. broad, contracted into a shortly attenuated blunt point. Flowers in axillary spicate panicles. Fruit ovoid or pyriform, about the size of a
grape, with a short, strong beak, and six longitudinal ribs. Pericarp thin, leathery, hairy inside, inclosing lenticular, thorny seeds resembling small horse-chestnuts, and each invested with an easily removed, flesh-colored aril.

HABITAT.—Brazil.

DESCRIPTION OF DRUG.—In cylinders, cakes, or balls of a dark reddish-brown color, not infrequently met with in the form of a light reddish-brown powder. In preparing the cylinders, etc., above referred to, the seeds deprived of arilode (papery shell) of the plant are first roasted, then ground, kneaded with water in a heated mortar into a pasty and pliable dough, made into forms, and dried. The forms thus made break with an uneven fracture, black-mottled from fragments of seeds. The drug has a peculiar characteristic chocolate-like odor and a bitter, astringent taste afterward sweetish. Guarana constitutes the
habitual beverage of thousands of people in the Amazon valley.

Powder.—Characteristics: See Part iv, Chap. 1, B.

CONSTITUENTS.—Tannic acid, not precipitated by tartar emetic or copper, gum, albumin, starch, a trace of volatile oil, saponin, a greenish fixed oil, and guaranine, an alkaloid identical with caffeine or theine. Of this it contains a much larger percentage as compared with other caffeine-yielding drugs. For example, good black tea gives an average yield of 2.13 per cent.; coffee, 1 per cent.; Paraguay tea (324), 1.2 per cent., and guarana, 4.5 per cent.

Preparation of Guaranine.—Treat the powder with boiling water. Evaporate the decoction on a water-bath to dryness, and exhaust the residue with chloroform. Distill off chloroform, treat residue with boiling water, filter, and evaporate the liquid to obtain caffeine (guaranine). Tea and kola can be treated in the same way for their active constituents.

ACTION AND USES.—Stimulant, especially beneficial in nervous headache, and used like tea, coffee, and other drugs containing caffeine-like principles. Dose: 15 to 60 gr. (1 to 4 Gm.).

OFFICIAL PREPARATION.

Fluidextractum Guaranae Dose: 15 to 60 drops (1 to 4 mils).

330. AÉSCULUS GLABRA Willdenow.—OHIO BUCKEYE. (Bark.) It has an especial action on the portal circulation and the liver, and promotes the biliary secretions. Dose of fluidextract: 3 to 5 drops (0.2 to 0.3 mil).

331. AÉSCULUS HIPPOCASTANUM Linné.—HORSE-CHESTNUT. (Bark and Fruit.) Habitat: Asia; cultivated as an ornamental tree in Europe and North America. The bark contains a bitter glucosid, esculin, isomeric with quinovin in cinchona bark, for which it is used as a substitute in Europe. It is tonic, astringent, antiperiodic, narcotic, and antiseptic. The nuts have a similar action, but in addition are antispasmodic, used chiefly in neuralgic affections. The administration of the fluidextract has been recently recommended as a palliative in hæmorrhoids. Dose of bark: ½ to 2 dr. (2 to 8 Gm.); of the nuts: 5 to 15 gr. (0.3 to 1 Gm.), generally in fluidextract.

Preparation of Esculin.—Precipitate a decoction of the bark with lead acetate, treat the filtrate with H₂S, evaporate and recrystallize.

332. MACASSAR OIL.—A fixed oil expressed from the seeds of Schlerche'ra triju'ga Willdenow, a small East Indian tree which is also a source of lac. This oil has a great reputation in its native country as a stimulating application to promote the growth of the hair, and also as a remedy in skin diseases, especially eczema.
RHAMNACEÆ.-Buckthorn Family

Shrubs or small trees with simple leaves; branches somewhat spinescent. Flowers somewhat dioecious. Fruit an indehiscent, fleshy, winged drupe, with a hard, woody endocarp, or a pod not arilled.

333. FRANGULA.—FRANGULA

BUCKTHORN

The dried bark of Rhamnus frangula Linné, collected at least one year before using.

BOTANICAL CHARACTERISTICS.—An elegant arborescent shrub, known as the berry-bearing alder. Leaves entire, with about 7 pairs of nearly opposite parallel veins. Flowers perfect, style simple; the fleshy berry is round, red, and on ripening becomes black and juicy.

HABITAT.—Europe and Northern Asia.

DESCRIPTION OF DRUG.—Quilled, about 1 mm. (1/25 in.) thick; outer surface grayish-brown, or blackish-brown, with numerous small, whitish, transversely-elongated lenticels and occasional patches of foliaceous lichens; inner surface smooth, pale brownish-yellow; fracture in the outer layer short, of a purplish tint; in the inner layer fibrous and pale yellow; when masticated, coloring the saliva yellow; odor distinct; taste sweetish and bitterish.

Medullary rays not converging at the outer ends (distinction from Rhamnus Purshiana); stone cells absent (distinction from Rhamnus Purshiana and Rhamnus Californica).

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Frangulin, or rhamno-xanthin, C₂₀H₂₀O₁₀, is a crystalline, lemon-yellow, odorless, tasteless glucoside; and emodin, a reddish principle, exists in the old bark; these develop by age. Two products are obtained from frangulin by hydrolysis—emodin, C₁₅H₁₀O₅, and rhamnose, C₆H₁₂O₅. Frangula-emodin differs from the rhubarb-emodin in melting-point, and in some color reactions. Senna and aloes
also contain an isomeric emodin. (See Rhamnus Purshiana.) Ash, not exceeding 6 per cent.

Preparation of Frangulin.—Macerate the bark for four days in carbon disulphide. Evaporate; exhaust residue with alcohol; evaporate alcoholic solution to dryness; crystallize from ethereal solution. Forms sublimable yellow crystals; becomes purple when treated with alkalies. Dyes cotton, silk, wool, etc., yellow.

ACTION AND USES.—A mild laxative or cathartic, acting like senna and often used in its stead. Dose: $\frac{1}{2}$ to 2 dr. (2 to 8 Gm.).

OFFICIAL PREPARATION.

Fluidextractum Frangulae  Dose: 1/3 to 2 fl. dr. (1.3 to 8 mils).

Sayre’s Materia Medica part IV - Page 2
334. CASCARA SAGRADA.—CASCARA SAGRADA

CHITTEM DARK

The dried bark of the trunk and branches of *Rhamnus purshian'a* De Candolle.

BOTANICAL CHARACTERISTICS.—Plants of this species of Rhamnus attain a height of 10 to 20 feet. The leaves are ovoid, 3 to 5 in. in length, and about ½ in. in their greatest width, serrate except at base (??—MM). Flowers are small and white, appearing after the leaves have matured. The fruit is a plain, round, black berry about ¼ in. in diameter, and contains three seeds. This species differs from other species of Rhamnus in that it is a larger tree and bears a larger fruit.

SOURCE.—Several allied species growing in the cascara district in California seem to contribute the cascara sagrada bark of the market. The official species grows abundantly in Northern California, Oregon, and Washington. "If the bark comes and is actually collected from Northern California, it is presumptive evidence that it is genuine. The probabilities of adulteration increase with its southward sources, and if collected in, or south of Central California, it is to be looked upon with greatest suspicion" (Rusby).

![Image of Rhamnus frangula](image_url)

*Fig. 169.—Rhamnus frangula—Cross-section of bark. (37 diam.) A, Cork. B, Group of bast fibers. C, Medullary ray. (Photomicrograph.)*

*Sayre's Materia Medica part IV - Page 3*
DESCRIPTION OF DRUG.—Curved pieces or quills 1 to 4 mm. to (1/25 to 1/6 in.) thick, and about 100 mm. (4 in.) long. The outer surface is reddish brown, frequently more or less covered with grayish or whitish lichens, the young bark having numerous rather broad, pale-colored warts; sometimes mottled or figured; inner surface smooth and finely striate, yellowish, turning brown or nearly black on exposure; fracture short, yellowish, of the inner layer somewhat fibrous and thick. A cross-section shows numerous thin, almost straight, broadening medullary rays, which run on an average about three-fourths of the distance across the bark. Medullary rays in groups converging at their outer ends (distinction from Rhamnus Californica); stone cells present (distinction from Rhamnus frangula). If to a small quantity of the powdered barks an alkaline solution be added, the color developed in
the Rhamnus Californica is a deep red, while that of R. Purshiana is orange. Odor distinct; taste bitter and slightly acrid.

CONSTITUENTS.—Emodin and frangulic acid; frangulin and purshianin—the two latter being glucosides, yielding, on hydrolysis, emodin and sugar. The principle, emodin, is found in many purgative drugs. Its composition, and its relation to several carbon compounds are shown in the following:

\[
\begin{align*}
C_{14}H_{10} & \quad C_{14}HSO_2 & \quad C_{14}H_6(OH)_2O_2 & \quad C_{14}H_4CH_3(OH)_3O_2 \\
\text{Anthracene} & \quad \text{Anthraquinone} & \quad \text{Chrysophanic Acid} & \quad \text{Emodin}
\end{align*}
\]

Emodin is, therefore, said to be a trioxy-methyl-anthraquinone. It is contained in rhubarb, senna, aloes, etc. See emodin test under Rhubarb (120). The resins are turned a vivid purple-red by caustic potash. The fresh bark is active as a purgative, causing much griping. By keeping and properly curing, however, this griping principle is destroyed, and the bark becomes more accurate in action and less likely to cause this discomfort. Ash, usually about 8 per cent.
Purshianin is a glucoside reported by Dohme and Englehardt. Obtained by first removing oil, etc., from the drug by means of chloroform, then extracting the residue with alcohol, etc. It crystallizes from acetone and ethyl acetate in dark brown-red needles, melting at 237º. On heating with alcoholic hydrochloric acid it yields sugar and emodin.

**ACTION AND USES.**—A valuable laxative in chronic constipation. Dose: 30 to 60 gr. (2 to 4 Gm.).

**Official Preparations.**

- Extractum Cascara Sagræ, ................. Dose: 4 gr. (0.25 Gm.).
- Fluidextractum Cascara Sagræ, ............. 15 ml (1 mil).
- Fluidextractum Cascara Sagræ Aromaticum, 30 ml (2 mils).

335. **RHAMNUS CATHARTICA**, N.F.—BUCKTHORN. The fruit of *Rham'nus cathart'ica* Linné. Habitat: Europe, Northern Asia, and naturalized in North America. Small, berry-like fruits about the size of a pea, borne on a receptacle at the end of a slender stalk; apex tipped with the style remnants. Smooth, purplish or black when fresh, in which state they are generally used; wrinkled on drying; four-celled, each containing a single triangular seed, surrounded by a brownish-green pulp; odor unpleasant; taste sweetish, afterward bitter and nauseous. They contain rhamnocathartin, rhamnin, sugar, gum, and tannin. A syrup is made from the juice, having strong purgative properties. Dose of syrup: 2 to 5 fl. dr. (8 to 20 mils). The green fruit treated with lime yields a pigment, sap-green.

336. **CEANOTHUS**.—NEW JERSEY TEA. RED ROOT. The root of *Ceano'thus america'na* Linné. Habitat: North America. About 300 mm. (12 in.) long, and 12 to 25 mm. (1/2 to 1 in.) thick, contorted and knotty; bark reddish brown, thin, inclosing a tough, light brown wood, finely rayed; odor none; taste astringent and bitter. It contains ceanothine, tannin, mucilage, etc. Astringent and expectorant. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

337. **GOUANIA**.—CHEWSTICK. The stems of *Goua'nia domingen'sis* Linné. Habitat: West Indies. Brownish-gray, wrinkled pieces of the stems, with a thin bark, and a yellowish-gray, fibrous, porous wood. It contains a bitter principle and is used as a tonic.

**AMPELIDEÆ**

Mostly climbing shrubs. Stems and branches nodose; tendrils and flower clusters opposite the leaves. Fruit a two-celled berry. Plants abounding in the Tropics.

338. **UVA PASSA**.—RAISIN. The dried fruit of *Vi'tis vinifera* Linné. Habitat: Western Asia, Europe, and California; the Valencia raisins are the kind generally used in pharmacy. Shriveled and pressed; brown, slightly translucent; internally pulpy, two-celled, with two seeds in each cell; taste sweet. Chiefly used as an agreeable
saccharine addition to preparations.

339. **AMPELOPSIS QUINQUEFOLIA** Michaux.—AMERICAN IVY. WOODBINE. (Root-bark.) Alterative, tonic, astringent, and expectorant. Dose of fluidextract: 30 to 60 drops (2 to 4 mils).

**TILIACEÆ.-Linden Family**

Mostly tropical trees, some of the species of the genus Tilia, yielding tenacious fibers for cordage. Flowers balsamic, furnishing infusions which are antispasmodic and diaphoretic.

340. **TILIA AMERICANA** Linné.—LINDEN FLOWERS. BASSWOOD LIME, TREE. Habitat: North America. Flowers yellowish; petals notched at base; odor pleasant; taste sweet and mucilaginous. Stimulant, diaphoretic, and lenitive. Dose: 15 to 30 gr. (1 to 2 Gm.). The bark is used as a demulcent, emollient and vulnerary.

**MALVACEÆ.-Mallow Family**

Mucilaginous, innocent plants, with tough bark and palmately-veined leaves; stamens monadelphous, in a column, and united with the short claws of the petals; pistils several, the ovaries united in a ring, or forming a several-celled pod.

---

**Synopsis of Drugs from the Malvaceæ**

A. Root. 
   **ALTHÆA**, 341. 
B. Flowers. 
   Althæa Rosea, 342. 
   Malva, 343. 

344. **DERIVATIVES OF THE COTTON PLANT.**

Bark, 344 a. Filamentous Hairs, 344 b. Oil, 344 c.

---

341. **ALTHÆA.**—ALTHEA

**MARSHMALLOW**

The dried root of **Althæa officinalis** Linné, deprived of the brown corky layer and small roots.

BOTANICAL CHARACTERISTICS.—Stem 2 to 4 feet high. Leaves ovate, or slightly heart-shaped, toothed, downy. Flowers pale rose color.

HABITAT.—Europe, Asia, United States, and Australia.
DESCRIPTION OF DRUG.—Whitish, cylindrical, or conical pieces deprived of the outer corky layer, from 75 to 150 mm. (3 to 6 in.) long, and about 10 mm. (2/5 in.) or more in diameter; longitudinally wrinkled, and marked with numerous brownish scars; somewhat hairy externally from loosened bast fibers; it breaks with a short mealy fracture, with projecting fiber-ends near the outer edge; odor faint, but characteristic, stronger in infusion; taste sweetish and mucilaginous. A cross-section shows small wood-bundles of scalariform and pitted vessels scattered throughout the prevailing parenchymatous tissue, but with an indistinctly radiate arrangement near the edge. The cells of the parenchyma contain starch and mucilage, with a few stellate rhaphides. Most of this drug now appears cut into fine pieces or granules. This often looks beautifully white, but on scrutiny it is found coated with lime. (Rusby.)

Powder.—Characteristic elements: Microscopical elements of: See Part iv, Chap. I, B.
CONSTITUENTS.—Asparagin, $C_4H_8N_2O_3H_2O$, 1 per cent. (a colorless, nearly tasteless, crystalline principle), bassorin, $C_{12}H_{20}O_{10}$, 25 per cent. (althæa mucilage, a turbid, slimy, non-adhesive mucilage, which when dried forms a very coherent mass), sugar 8 per cent., pectin 10 per cent., ash 5 per cent., starch 35 per cent., a fixed oil, and a trace of tannin. Ash, not to exceed 8 per cent.

ACTION AND USES.—Used as a demulcent application to inflamed mucous tissues, as in bronchitis. Powdered marshmallow root being exceedingly absorbent, is used advantageously to impart consistency to soft pill-masses. (In Mass. Hydrarg., 15 per cent. In Blaud's Pills and Pil. Phosphorus.)

ALTHEA FOLIA—recognized by the N.F.

342. ALTHÆ'A RO'SEA Cevanilles.—HOLLYHOCK. (Petals.) Indigenous to Western Asia, but cultivated in gardens for its large, purple, ornamental flowers. Petals broadly obovate, notched above and with a claw at base; odor slight; taste sweetish, mucilaginous, and astringent. They contain tannin, mucilage, and a coloring matter. An infusion is occasionally used as a demulcent.

343. MALVA.—MALLOW. The flowers of Mal'va sylves'tris Linné, an herbaceous plant growing abundantly in Europe. When fresh, of a rose-red or purple color, becoming blue when dried; odor slight; taste sweetish and mucilaginous. Emollient and demulcent.

MALVÆ FOLIA—recognized by the N.F.

344. DERIVATIVES OF THE COTTON PLANT

Bark, Hairs of Seed, and the Oil of Gossyp'ium herba'ceum Linné, and other species of Gossypium.

BOTANICAL CHARACTERISTICS OF GOSSYPIUM HERBACEUM.—Large herbs with alternate leaves, which are more or less palmately-lobed. Flowers are large, showy, more or less yellow or red; pistils 5, united at their base. Stamens numerous, united below and adhering to the petals. Capsule roundish, 3- to 9-celled, opening at the top by as many valves. The numerous seeds are glossy, covered with long, woolly hairs, which constitute the cotton.

HABITAT.—Asia and Africa; cultivated in the United States.
344a. **ROOT BARK. — Gossypii Cortex, N.F. COTTON-ROOT BARK.**—Long bands or curved pieces, sometimes in quills. The outer surface is of a yellowish-brown color, dotted with a few small black spots, and, from the abrasion of the thin cork, numbers of orange-brown patches; the inner surface is whitish and has a silky luster; the bast fibers are long and tough, and may easily be separated into papery layers; inodorous; taste very slightly acrid and astringent.

*Fig. 175. — Gossypium herbaceum—Branch.*
Powder.—Light brown. The microscopical elements are: The simple and compound starch grains, the aggregate calcium oxalate crystals, colored resin, and tannin masses; the numerous long, slender, and thick-walled bast fibers (8 to 15 µ thick), large cork cells, etc.

CONSTITUENTS.—A yellow resin, fixed oil, tannin (small quantity), sugar, starch, and, in the fresh bark, a yellow chromogen, which becomes red and resinous on exposure to the air. To this change is due the red color of old specimens, and old preparations, of the bark.

ACTION AND USES.—Emmenagogue and oxytocic, stimulating uterine contractions probably by direct action on the uterine center in the spinal cord; said to be as efficient and more safe than ergot. Dose: 15 to 60 gr. (1 to 4 Gm.).

344b. HAIRS OF SEED.—Gossypium Purificatum. PURIFIED COTTON, Fine, white, soft filaments, which, under the microscope, appear as hollow, flattened, and twisted bands; unacted upon by ordinary solvents. Ordinary raw cotton contains among other impurities fatty substances, which, when removed by chemical means, such as alkaline or ethereal solvents, changes its character so that the fiber, which formerly was almost impenetrable by aqueous liquids, now becomes so absorbent that it no longer floats on water, but when placed on the surface of that liquid will readily absorb it and sink.

CONSTITUENTS.—Almost pure cellulose; by the action of nitric acid this is converted into soluble gun-cotton.

ACTION AND USES.—Employed as a dressing for burns, scalds, and excoriated surfaces, and for making antiseptic cottons, such as salicylated cotton, benzoinated cotton, iodoform cotton, etc.

Pyroxylinum (Soluble Gun-cotton), the basis of the various official collodions.

344c. OIL.—OLEUM GOSSYPII SEMINIS A fixed oil expressed from the seeds. Pale yellowish, odorless, with a bland, nut-like taste; specific gravity 0.920 to 0.930 at 15ºC (59ºF.), solidifying at about 0º to —5ºC. (32º to 23ºF.); very sparingly soluble in alcohol. Brought into contact with concentrated sulphuric acid, the oil at once assumes a dark reddish-brown Color. Color reactions with nitric acid and silver nitrate (see U.S.P. tests) distinguish this oil from other similar oils. The oil is used as a basis for Linimentum Ammoniae, Linimentum Camphorae, etc. Processes have been invented for purifying the crude oil to abstract its acid resin, and so leave it bland and as palatable as the olive oil, for which it is oftentimes substituted as a table or salad oil.

CONSTITUENTS.—Palmitin, olein, and a pale-yellow coloring-matter that is nonsaponifiable.
Trees or shrubs with soft wood; sometimes climbing. Fruit dry, rarely fleshy (Theobroma, 346); seeds globose or ovoid, with coriaceous or crustaceous testa. The two plants of interest of the order are the one mentioned and Cola, 70.

345. COLA N.F.—COLA (KOLA). The dried kernel of the seed of Cola acuminata R. Brown (Fam. Sterculiaceae), yielding by assay 1 per cent. of total alkaloids. Occurring in irregular somewhat plano-convex pieces; cotyledons from 15 to 30 mm. long and 5 to 10 mm. thick; dark brown or reddish-brown; fracture short, tough; odor faintly aromatic, taste astringent and somewhat aromatic. The drug contains alkaloids consisting mostly of caffeine and theobromine, about 40 per cent. of starch, a little volatile oil, fat, and tannin. The kolanin of Knebel is simply a kolatannate of caffeine. Kolatannic acid differs from caffeotannic acid in being free from sugar. Tonic, stimulant, and nervine; used as a beverage by the natives of Africa as is coca by the natives of South America. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

“Bissey nuts” are the seed of the Cola naturalized and cultivated in the West Indies. It should be said with regard to the many preparations of Cola that they seem to lack a certain degree of permanence: the fluidextract of the Cola, for example, is an unsatisfactory preparation, because of the immense precipitation which goes on for a long time after the preparation is made.
346. **THEOBROMA.**—CACAO. CHOCOLATE NUT. The seed of *Theobroma cacao* Linné. Habitat: Mexico; cultivated in the West Indies. About the size of an almond, flattened, invested with a thin, longitudinally wrinkled testa, varying from reddish to grayish-brown in color; somewhat ovate in shape, the hilum being situated on the broader end. The cotyledons are brown, oily, somewhat ridged. Odor agreeable when bruised; taste bitterish, oily. Contains 45 to 53 per cent. of fixed oil (Cacao Butter), and 1.5 per cent. of theobromine, an alkaloid similar to caffeine. **Chocolate** is
made by roasting the seed, removing the testa, then powdering the kernels, forming
the powder into cakes with water, and flavoring with vanilla or other substances.

THEOBROMINE AND ITS COMPOUNDS.—THEOBROMINA, $C_7H_7$-
$N_4O_2$.–3,7–dimethyl–xanthine, occurs also in Kola (Cola, 345), etc., also
made synthetically, action and uses same as caffeine.

THEOBROMINE SODIUM SALICYLATE (“Diuretin”).—A white
powder, odorless, soluble in water. Dose: 15 gr. (1 Gm.).

Theobromine Sodium Acetate (Agurin), has great solubility and is well
tolerated by the stomach. Dose: 15 gr. (1 Gm.).

Preparations of Theobromine.—Obtained from an infusion of cacao, precipitating it
with lead acetate, removing excess of lead by $H_2S$, evaporating, and exhausting the
residue with boiling alcohol. The alkaloid separates on cooling. Sparingly soluble in cold
water, alcohol, and ether.

346a. OLEUM THEOBROMATIS, U. S.—CACAO BUTTER. A fixed
oil expressed from the seed. A yellowish-white, brittle, fatty solid, of
tallow-like consistence, melting at 30º to 33ºC. (86º to 91.4ºF.), about the
temperature of the body; has a faint, chocolate-like taste and agreeable
odor. Should respond to the various important official tests (see U.S.P.).
Contains palmitin, stearin, laurin, olein (small quantity), theobromine,
and glycerides of formic, acetic, and butyric acids. Employed largely in
making suppositories.

TERNSTROÈMIACEÆ.—Tea or Camellia Family

Trees or shrubs with simple, usually alternate, leaves, often fascicled at the tops of
the branches.

347. THEA.—TEA. The leaves of Camel'lia the'a Link. Habitat: Southern Asia;
cultivated. From 25 to 75 mm. (1 to 3 in.) long, petiolate, acute at both ends,
irregularly serrate except at base, and with anastomosing veins near the margin;
bluish-green or blackish. The green color of tea is not infrequently intensified by a
mixture of Prussian-blue and gypsum. Odor peculiar, taste bitter and astringent.
Contains volatile oil and an alkaloid, theine, which is analogous to, if not identical with,
caffeine. Much of the caffeine of commerce is made from tea siftings. Astringent,
tonic, stimulant, and nervine; one of the most valuable stimulating and restorative
agents.
GUTTIFERÆ

Trees or shrubs with opposite or whorled coriaceous leaves; stamens indefinite; stigmas sessile, radiant. Many species, like the gamboge, yield a yellow juice; the seeds of others are oily. Among the edible fruits of the order is the mangosteen, regarded as the most delicious fruit in the world.

348. CAMBOGIA.—GAMBOGE

GAMBOGE

Fig. 177.—Garcinia hanburyi—Branch.
A gum-resin from *Garcinia hanbu'rii* Hooker filius.

BOTANICAL CHARACTERISTICS.—The gamboge tree has dioecious flowers and a foliage resembling that of laurel. Flowers yellow; male flowers in axillary clusters, on short, one-flowered pedicels. Female flowers sessile. Fruit a berry, about the size of a large cherry, reddish-brown, containing a sweet pulp.

HABITAT.—Anam, Camboja, Siam, and Cochin-China.

DESCRIPTION OF DRUG.—Lumps, or cylindrical sticks (pipes), 25 to 50 mm. (1 to 2 in.) in diameter, and 100 to 200 mm. (4 to 8 in.) in length, striated lengthwise by impressions from the bamboo in which it is collected. Externally, grayish-brown. It has a smooth, conchoidal fracture of a waxy luster and orange-red in color. The powder is bright yellow and sometimes adheres to the drug, giving it a yellow appearance. Taste at first mild, afterward very acrid; odor irritating, sternutatory. The cake or lump gamboge is sold in masses weighing two or three pounds. It is less uniform, less brittle, and is sometimes called “coarse gamboge.” Adulterated specimens are easily recognized by their general inferior appearance, by the grayish or bronze appearance of a broken surface, and by giving a blue or green color with iodine when starch is one of the impurities. Pure gamboge is completely soluble by successive treatment with ether or alcohol and then water.

CONSTITUENTS.—A bright yellow resin (gambogic acid) 73 per cent., soluble in alcohol and ether, turned to a red color by alkalies, and blackbrown by ferric chloride; gum 16 to 26 per cent., which, with the resin and hot water, forms a yellow emulsion; wax 4 per cent. and ash not more than 2 per cent.

ACTION AND USES.—A drastic hydragogue cathartic, but so liable to produce vomiting and griping that its action is usually modified by combining it with other milder purgatives. Dose: $\frac{1}{2}$ to 5 gr. (0.0324 to 0.3 Gm.), generally in pill form.

OFFICIAL PREPARATION.  
**Pilulæ Catharticae Compositæ**  
Dose: 2 to 5 pills.

349. MANGOSTANA.—MANGO FRUIT. MANGOSTEEN. The pericarp of the fruit of *Garcinia mangostana* Linné, of India. Astringent; used in various diseases of the mucous membrane, in injections, etc. Mangostin has been isolated from the pericarp. It is golden-yellow in color, crystallizes in scales, soluble in alcohol and ether. The fruit yields a fatty oil, concrete oil of mangosteen, called kokum butter, used in soap.
making. It is well adapted for pharmaceutical preparations and candle-making. Dose: 15 to 60 gr. (1 to 4 Gm.).

HYPERICINEÆ.-St. John's-wort Family

350. HYPERICUM.—ST. JOHN'S-WORT. The herb of Hypericum perforatum Linné. Habitat: Europe, Asia, and North America. The drug as it appears in market is composed of a mixture of oblong-ovate, pellucid-punctate leaves, thread-like branches, and less slender, brittle stems, with occasionally blackdotted flower petals, the whole having a greenish-brown appearance. Constituents: Resin, tannin, and a red coloring matter. Used as a stimulant, diuretic, and astringent. Dose: 30 to 60 gr. (2 to 4 Gm.).

DIPTEROCARPEÆ

Trees often gigantic, exuding a resinous juice; rarely shrubs.

351. GURJ UN.—GURJ UN BALSAM. WOOD-OIL. An oleoresin exuding from Dipterocarpus pusturbinatus Gaertner, and other species of Dipterocarpus. Habitat: India and the East Indies. A thick, viscid balsam with uses and properties similar to copaiba. Opaque, and grayish, greenish or brownish in reflected light; transparent and reddish-brown or brown in transmitted light; odor copaiba-like; taste bitter. It contains a volatile oil, 40 to 70 per cent., which is similar to oil of copaiba in composition, and produces a red or violet color with a drop of H₂SO₄ and HNO₃ mixed; also gurjunic acid (crystalline), resin, and a bitter principle. Owing to its close resemblance to copaiba it has been used in considerable quantities for the purpose of adulterating the latter.

352. BORNEO CAMPHOR.—SUMATRA CAMPHOR AND BORNEOL. A stearopten, or camphor, C₁₀H₁₈O, obtained in solid crystalline form from fissures and cavities in a gigantic forest tree, Dryobalanops aromatica Colebrook, growing in the Malay Archipelago. It occurs in masses some pounds in weight. Differs from the ordinary camphor in having a higher specific gravity (heavier than water) and in being less volatile, With nitric acid it yields the Japan (laurel) camphor, C₁₀H₁₆O.

FRANKENIACEÆ

353. FRANKENIA.—YERB'A REUM'A. (Herb.) A California plant, Frankenia grandiflora Chamisso et Schlechtendal. A valuable topical application in catarrhal affections, and in diseases of the mucous membranes generally. Dose of fluidextract: 10 to 30 drops (0.6 to 2 mils), diluted.
CISTINEÆ.—Rock-rose Family

354. **HELIANTHEMUM**, N.F.—FROSTWORT. The herb of *Helianthemum canaden'se* Michaux. Habitat: North America. As found in commerce it consists of broken branches or stems not longer than 1 to 1 1/2 inches, mixed with a few broken roots, crushed, woolly leaves, and, occasionally, yellow petals; the stems are red-brown, thread-like, slightly pubescent, internally whitish, with a large pith; taste astringent and bitter. It contains a bitter glucoside, soluble in water, alcohol, and benzol, and 11 per cent. of tannin, with sugar and gum. Tonic, astringent, and alterative, in the treatment of scrofulous diseases. Dose: 5 to 20 gr. (0.3 to 1.3 Gm.).

BIXINEÆ

Trees and shrubs with alternate simple leaves and regular, symmetrical flowers. The fruits of some species are edible, and gums are obtained from a few others.

355. **GYNOCARDIA**.—CHAULMOO'GRA. The seed of *Gynocardia odora'ta* R. Brown. Habitat: Malayan Peninsula. Contains an acrid, whitish fat, known in market as *chaulmoogra oil*, separated from the kernels by expression or by boiling water, then taken up by ether or chloroform, which, when evaporated, leaves the oil almost pure. Gynocardic acid, a constituent, is sometimes employed in medicine. “The oil is a very successful remedy in eczema of the third stage.” The oil is esteemed in India for the treatment of all manner of skin diseases. Its unctuous smoothness has been compared to that of goose-grease. Dose (Of Oil): 10 to 20 drops (0.6 to 1.3 mils), in gelatin capsules or in emulsion.

356. **ANNATO**.—A coloring substance obtained from a tropical American tree, *Bixa orella'na*. The seeds steeped in water and allowed to ferment, and this liquid evaporated to a paste, becomes the anna'to of commerce, used as a cheese and butter color. By the natives the fragrant reddish pulp of the seeds is used as an astringent in diarrhea. It is also used as a dyestuff for silks and other fabrics.

CANELLACEÆ

An order furnishing mostly aromatic trees.

357. **CANELLA**.—CANELLA, N.F. The bark of *Cannel'la al'ba* Murray. A native of Florida, West Indies, etc. In quills or broken pieces deprived of the corky layer; outer surface orange-red, marked with small scars and depressions; inner surface whitish; odor slight, aromatic; taste bitter and very pungent and biting. It contains a reddish volatile oil (about 2 per cent.), a portion of which is closely related to eugenol of oil of cloves, with resin, ash, mannite, a bitter principle, cellulose, albumen, and starch. Aromatic and stimulant, used as an adjuvant. The powder is used in making “hierapicra,” Pulv. aloes et canellae, at one time recognized as an official preparation.

Sayre's Materia Medica part IV - Page 18
358. CINNAMODENDRON.—The bark of \textit{Cinnamoden'dron cortico'sum} Miers. An aromatic bark from Jamaica, coming in curved or quilled pieces. Odor cinnamon-like; taste bitter, biting, giving a suggestion of canella, but this bark contains tannin, which canella does not. Used as an aromatic stimulant. Enters commerce solely from the Bahamas, where it is known as cinnamon bark, or as white wood bark.

**VIOLARIEAE.**—Violet Family

Herbs with alternate or radical leaves; corolla of 5 unequal petals, one being spurred; stamens 5, connivent, alternate with the petals; fruit a 3-valved capsule.

359. \textit{VIOLA TRICOLOR}.—PANSY. HEART’S-EASE. The herb of \textit{Viola tricolor} Linné. Habitat: Europe, North America, and Northern Asia; cultivated. The drug consists of the herbaceous upper portion of the plant, including green leaves, straw-colored, broken stems, and the variegated flowers. Odor slight, pleasant; taste somewhat bitter. It contains salicylic acid 1 per cent., sugar, mucilage, a bitter principle, resin, and violin (in small quantity). Mucilaginous, emollient; much used in Europe as an alterative in skin diseases, especially eczema. Dose: $\frac{1}{2}$ to 2 dr. (2 to 8 Gm.).

**TURNERACEÆ**

360. TURNERA.—DAMIANA, N.F. The leaves of a Mexican plant, \textit{Turnera aphrodisiaca} (\textit{T. diffu’sa} Willdenow). About 8 to 16 mm. ($\frac{1}{3}$ to $\frac{2}{3}$ in.) long, obovate or lanceolate, with a few-toothed margin; surface smooth or with a few hairs on the under side along the ribs. They generally have mixed with them pieces of the slender, woody stem, which is reddish-brown and hairy, the branches being terminated by hairs; odor somewhat aromatic, due to the presence of about 0.5 per cent. of volatile oil. Damiana leaves form the basis of a number of the quack aphrodisiacs. It is not known as a drug in Mexico, but as a general tea-like beverage. Dose: about 1 dr. (4 Gm.), in infusion.

**PASSIFLOREÆ.**—Passion-flower Family

361. CARICA PAPAYA.—MELON-TREE. TRUE PAPAW (wholly different from the common papaw, \textit{Asim‘ina trilo’ba}, of our Southern States). Habitat: Tropics; cultivated. Although the inspissated juice (papain) of the unripe fruit has been for a long time known as a medicinal agent, having a reputation in its native country as a remedy for haemoptysis, bleeding piles, and ulcers of urinary passages, and for ringworm, etc., it has only comparatively recently attracted attention as a digestive agent. Dymock, in his treatise on the drugs of British India, says: “Its digestive action on meat was probably known in the West Indies at a very early date. *** It has long been the practice to render meat tender by rubbing it with the juice of the unripe fruit or by rubbing it with the leaves. Its therapeutic value, in the form of papain, is
specially commended in aggravated symptoms of dyspepsia.” Its constituents are mainly globulin, albumin, and albumoses. Dose: 1 to 3 gr. (0.065 to 0.2 Gm.).

362. PASSIFLORA, N.F.—PASSION FLOWER. The herb of Passiflora incarnata Linné; indigenous. Said by eclectic and homoeopathic practitioners to be a somnifacient, useful in neuralgia, sleeplessness, dysmenorrhœa, etc. Dose of a saturated tincture: 15 to 30 drops (1 to 2 Mils).

363. CACTUS GRANDIFLORUS, N.F. Linné.—NIGHT-BLOOMING CEREUS. Habitat: Tropical America; cultivated as an ornamental herb. The fleshy, hexagonal flowering branches are used in the fresh state. Sedative and diuretic; useful in diseases of the heart when there is an irregularity of action. The tincture and fluidextract have of recent years been growing in popularity, but the supply of the drug seems difficult to obtain, and for this reason, partly, the drug is not official. Dose: 5 gr. (0.3 Gm.).
364. **ANHALONIUM LEWINI**, Henning.—A Mexican cactus, acting powerfully as a cardiac and respiratory stimulant; it has been used to a slight extent in medicine in angina pectoris and asthmatic dyspnea. A source of mescal buttons. A powerful habit-forming narcotic and intoxicant.

**THYMELEACEAE.—Mezereum Family**

Shrubby plants, with the bark containing strong bast fibers, and very bitter.

365. **MEZEREUM.—MEZEREUM**

---

**Fig. 178.—Daphne mezereum—Fruiting branch and flowers.**
MEZEREON BARK

The dried bark of Daph'ne meze'reum Linné, or Daphne guidium Linné or of Daphne Laureola.

BOTANICAL CHARACTERISTICS.—A small shrub with smooth, evergreen, lanceolate leaves. Flowers spicate, appearing before the leaves, rose-colored, 4-lobed. Berry bright red, fleshy, 1-seeded.

HABITAT.—Mountainous regions of Europe, Siberia, Canada, and New England.

DESCRIPTION OF DRUG.—This bark comes to us in tough, pliable strips, from 2 to 4 feet long, 25 MM. (1 in.) or less broad, always rolled into bundles or balls; the very thin periderm is of a greenish-orange or purple color, marked with transverse scars and minute black dots; beneath it is a soft, greenish parenchymatous layer, from which it separates easily. The inner surface is whitish, covered with irregular layers of white silky bast fibers, tangentially arranged. Fracture tough. Odorless; taste exceedingly acrid.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—It contains a crystalline glucoside, daphnin, C_{15}H_{16}O_{9}, which is not the active principle, however, the medical virtues depending upon an acrid resin termed mezerein.

ACTION AND USES.—Sialagogue, stimulant, and alterative. Externally vesicant, in ointment or applied in the form of a small square, moistened. Dose: 1 to 8 gr. (0.065 to 0.6 Gm.).

OFFICIAL PREPARATION.

Fluidextractum Sarsaparillæ Compositum,
(3 per cent.) Dose: 1/2 to 1 1/2 fl. dr. (2 to 6 mils).

PUNICACEÆ.—Pomegranate Family

366. GRANATUM—POMEGRANATE

POMEGRANATE

The stem-bark and root-bark of Pu'nicagrana'tum Linné, without more than 2 per cent. of adhering wood and other foreign matter.
BOTANICAL CHARACTERISTICS.—Tree shrubby, 20 feet in height; branches erous, sometimes bearing thorns. Leaves opposite, entire, oblong, pointed at each end. Flowers large, rich scarlet, terminal. Fruit a berry about the size of an orange; rind thick, having a reddish-yellow exterior; pulp many-seeded, acidulous.

HABITAT.—Mediterranean Basin and various portions of Asia; cultivated in all warm climates for its ornamental flowers.

DESCRIPTION OF DRUG.—The stem bark comes occasionally in quills, more frequently in curved pieces 20 to 80 mm. long, 5 to 20 mm. in diameter; bark 0.5 to 2 mm. thick, outer surface yellowish-brown, with grayish patches; longitudinally wrinkled; small lenticels. Inner surface light yellow or brownish-yellow, finely striate, smooth. Fracture short, smooth, inner layer of bark (phelloderm) dark green, inner bark light brown, odor slight; taste astringent, somewhat bitter.

The root bark has a rough, yellowish-gray to brown outer surface, marked with more or less longitudinal patches of cork, green inner layer of bark absent. Medullary rays extending nearly to the outer layer; inner surface smooth and yellowish with irregular brownish blotches.
Assay of the drug consists in the extraction and separation of the alkaloid from the drug by acidulated water, washing out the aqueous solution of the salt (after neutralization) with chloroform, again washing the latter solution with $\frac{N}{10}$ hydrochloric acid and titrating final solution in the usual way. No authoritative standard has been fixed.

STRUCTURE.—The tissue consists chiefly of large-celled parenchyma, traversed by one-rowed medullary rays of quadratic cells, each ray accompanied by a single row of crystal cells. The inner bark steeped in water and then rubbed on paper produces a yellow stain, which is
rendered blue by ferrous sulphate, and rose-red by nitric acid, soon vanishing. These properties distinguish it from the bark of the box-root and the barberry, with which it is sometimes adulterated.

CONSTITUENTS.—Mannite, punico-tannic acid, 22 per cent. (resolved by hydrolysis into sugar and ellagic acid), and the active constituent, **pelletierine**, \( C_9H_{13}NO \), with its three allied alkaloids, **methyl-pelletierine**, \( C_9H_{17}NO \), **pseudo-pelletierine**, \( C_9H_{15}NO \), and **iso-pelletierine**. Pelletierine is a liquid alkaloid, readily soluble in water, alcohol, and ether. Several salts of it are made, but the **tannate** is the official one. This is yellowish, hygroscopic, and pulverescent, with a pungent astringent taste, soluble in 700 parts of water and 80 parts of alcohol. Ash, not exceeding 16 per cent.

Preparation of Pelletierine—Displace powder with water mixed with lime, exhaust percolate with chloroform, etc. It is claimed by Tanret to be the anthelmintic constituent. Is probably a mixture of several alkaloids.

ACTION AND USES.—Astringent, **taeniafuge**. Dose: \( \frac{1}{2} \) to \( 1\frac{1}{2} \) dr. (2 to 6 Gm.). The alkaloid pelletierine is a taeniafuge in extensive use; it is given in the form of tannate in doses of about 5 gr. (0.3 Gm.).
PREPARATION. OFFICIAL

Fluidextractum Granati

Dose: 1 to 2 fl. dr. (4 to 8 mils).

367. **GRANATI FRUCTUS CORTEX**.—POMEGRANATE RIND. Irregular fragments, of a yellowish or reddish-brown color; outer surface rough from tubercles; inner surface marked with small depressions; hard; brittle. It contains a greater proportion of tannin than the bark, but has the same medical properties.

**MYRTACEÆ**

Trees and shrubs, without stipules. Leaves opposite, entire, pellucid-punctate, usually with a vein running close to the margin; they are usually fragrant and pungent, due to volatile oil residing chiefly in the pellucid dots or glands.

*Synopsis of Drugs from the Myrtaceæ*

<table>
<thead>
<tr>
<th>A. Leaves.</th>
<th>D. Seed.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>EUCALYPTUS</strong>, 368.</td>
<td>Jambul, 373.</td>
</tr>
<tr>
<td>Myrcia, 369.</td>
<td></td>
</tr>
<tr>
<td>Chekan, 370.</td>
<td></td>
</tr>
<tr>
<td>B. Flower.</td>
<td>E. Volatile Oils.</td>
</tr>
<tr>
<td></td>
<td><strong>OLEUM CAJUPUTI</strong>, 374.</td>
</tr>
</tbody>
</table>

368. **EUCALYPTUS**—EUCALYPTUS

**EUCALYPTUS**

The dried leaves of *Eucalyptus glob'ulus* Labillardierre, collected from the older parts of the tree with not more than 3 per cent. of the stems and fruit of the tree or other foreign matter.

**BOTANICAL CHARACTERISTICS.**—Rapid-growing trees, attaining the height of 200 to 300 feet. Flowers solitary, or in clusters of 2 or 3, axillary; peduncles broad, somewhat hemispherical in shape, prolonged into a cone, and united with the petals and 4- or 5-celled ovary, making a peculiar hard, brittle, floral envelope, which is quite aromatic. Wood exceedingly hard, remarkable for toughness and durability.

**SOURCE.**—This is an Australian tree, but is cultivated extensively, especially in malarial districts in various subtropical portions of the world. In California the tree is abundant. At the State Forestry Station at San Monica forty-four species are cultivated. Among these, the Globulus is the most valuable. The Amygdalina possesses the best emollient properties. *E. rostrata* Schlecht (red gum) furnishes an
inspissated juice, which is used for the same purpose as kino.

Fig. 183.—Eucalyptus globulus—Branch.

Sayre's Materia Medica part IV - Page 27
It has been stated that the anti-malarial property attributed to these trees is probably due to their power of absorbing moisture rather than from emanations from them. They probably act in a dual capacity.

DESCRIPTION OF DRUG.—Petiolate, scythe-shaped, from 150 to 300 mm. (6 to 12 in.) long, 20 to 40 mm. (4/5 to 13/5 in.) broad, tapering from near the base to the apex; pale grayish-green, smooth, and of a leathery texture; margin entire, with a parallel vein a short distance from it, running from base to apex of the leaf; odor camphoraceous; taste cooling, bitter, astringent, and aromatic.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—The virtues of the leaves depend upon a volatile oil (which contains the valuable antiseptic, Eucalyptol) existing to the extent of 2 to 6 per cent.; the freshly-dried leaves yield the greatest proportion.

ACTION AND USES.—Used as a febrifuge, stimulant, and astringent. Its principal action, however, is that of the volatile oil, or rather its chief constituent, eucalyptol, C_{10}H_{18}O, antiseptic. Dose: 1/2 to 2 dr. (2 to 8 Gm.). Dose of eucalyptol cineol: 5 drops (0.3 mil)

OFFICIAL PREPARATION.

Fluidextractum Eucalypti Dose: 5 to 60 drops (0.3 to 4 mils)-

368a. OLEUM EUCALYPTI.—A colorless or yellowish volatile oil, distilled from the fresh leaves. It has a spicy, cooling taste, and somewhat camphoraceous odor. Consists of two hydrocarbons (cymene, C_{10}H_{14}, and eucalyptene, C_{10}H_{16}), a terpene, and Eucalyptol, C_{10}H_{18}O, upon which its value depends; it is obtained as one of the fractions in the distillation of the oil, coming over between 170º to 178ºC. It should contain not less than 70 per cent. of Eucalyptol when assayed by the official process. Should be kept protected from light in cool place. It is a nearly colorless liquid, with a strong, aromatic, camphoraceous odor; slightly soluble in water, but very soluble in alcohol, carbon disulphide, and glacial acetic acid. Dose: 5 to 10 drops (0.3 to 0.6 mil). Antiseptic. Used frequently as an inhalant in respiratory diseases either with atomizer or with steam. Dose of the oil: 5 to 10 drops (0.3 to 1 Mil)
368b. **Eucalyptus Rostrata** Schlecht.—RED Gum. The resin or inspissated juice. Synonyms: CREEK GUM, MURRAY RED Gum, RED GUM KINO, EUCALYPTI GUMMI. Habitat: Australia. Small, angular, ruby-red, shining pieces; in thin layers transparent. Resembles kino, but has a brighter appearance and is less astringent. The taste is bitter. Almost entirely dissolved by alcohol. Properties: A good astringent, similar to kino. Preparations: Fluid and lozenges. Uses: Checks the purging of mercurial pills administered for syphilis. Has been recommended for seasickness. Dose: 5 to 20 Minims of the fluid.

369. **Myrcia**.—BAY LEAVES, WAX MYRTLE, WILD CLOVE LEAVES. The leaves of *Myr'cia ac'ris* De Candolle, a West Indian tree. These leaves are aromatic and spicy, containing a volatile oil, which, when distilled, forms the Oleum Myricæ, and when distilled over with rum, forms bay rum.

369a. **Oleum Myricæ** (1890).—OIL OF BAY. A volatile oil distilled from bay leaves. It is a brownish-yellow, slightly acid liquid, having an agreeable, somewhat clove-like odor, and a warm, spicy taste; sp. gr. 0.96 to 0.98. It consists of a light and a heavy oil—the light a
hydrocarbon identical with that of cloves and allspice, the heavy composed chiefly of eugenol.

PREPARATION.

*Spiritus Myrciae* (U.S.P. 1890) (8 per cent., with the oils of orange-peel and pimento). Artificial Bay Rum.


371. CARYOPHYLLUS.—CLOVES

The dried flower buds of *Eugenia aromatica* O. Kuntze (Iambosa caryophyllus (Sprengel) Niedenzu) with not more than 5 per cent. of peduncles, stems and other foreign matter.

BOTANICAL CHARACTERISTICS.—A shrubby evergreen, with hard wood, covered with a smooth, gray bark. Leaves opposite, ovate-lanceolate, coriaceous. Petals 4, globular in bud, afterward spreading, whitish, aromatic. Ovary 2-celled; fruit a large, elliptical berry.

SOURCE.—The original habitat of the clove tree was the Molucca Islands, but they have been introduced into other East Indian Islands, into Zanzibar (which now forms the principal source), and into Cayenne. They are picked singly while green and are dried in the sun. Commercial: There are several varieties, as Molucco, Sumatra, and South American, the latter being rather inferior.

DESCRIPTION OF DRUG.—Cloves are about 15 mm. (3/5 in.) long, of a dark brown or reddish-brown appearance; the calyx tube is long, nearly cylindrical, crowned with the four stiff teeth (clasping the unexpanded corolla); *corolla* of four lighter colored, *unexpanded petals*, forming a hollow ball on the top of the calyx-tube, inclosing the numerous curved stamens and the single style; the ovary is inferior, situated near the top of the calyx-tube, and consists of two cells, each containing many ovules. A *cross-section* of the lower part of the calyx-tube under the microscope shows a thin outer layer surrounding a darker zone; this outer layer contains a double ring of oil cells; the inner darker zone contains an outside circle of about thirty fibrovascular bundles, with a larger bundle running through the center. *Odor* highly aromatic,
especially when scratched; **taste** pungent and aromatic, followed by slight numbness.

**CONSTITUENTS.**—**About 18 per cent. of volatile oil**, 17 per cent. of tannin, a little fixed oil, gum, resin, etc. Two crystalline principles have been separated, caryophyllin, $C_{10}H_{16}O$, white, odorless, and tasteless, resinous, and eugenin, $C_{10}H_{12}O_2$, isomeric with eugenol of the volatile oil, soluble in boiling alcohol and ether, as is also caryophyllin, but differing from the latter in turning red with nitric acid. Water extracts
the volatile oil with scarcely any of the pungency of taste. Ash, not exceeding 8 per cent.

Preparation of Caryophyllin.—Treat ethereal extract of cloves with water, collect precipitate, and purify with ammonia.

ACTION AND USES.—Stimulant and carminative, used mostly as a synergist. Dose: 5 to 10 gr. (0.3 to 0.6 Gm.).

OFFICIAL PREPARATION.

Tinctura Lavandulæ Composita
(0.5 per cent.) Dose: 1/2 to 2 fl. dr. (2 to 8 mils).

Tinctura Rhei Aromatica.

371a. CAROPHILLI FRUCTUS.-The ripe fruit, or Mother Cloves, resembles cloves in appearance, but is thicker and somewhat lighter in color and less aromatic; the corolla is absent, but the calyx-teeth still adhere.

371b. OLEUM CARYOPHYLLI.—OIL OF CLOVES. A pale yellowish-brown, thin liquid, becoming reddish-brown on exposure. It has a specific gravity of 1.060 and boils at about 250°C.; slightly acid; taste aromatic and hot; odor characteristic, aromatic. Oil of cloves consists of two oils—one lighter than water, the other heavier; the light oil, caryophyllene, C₁₅H₂₄, sp. gr. 0.91, is a pure hydrocarbon, and is thought to be inactive; the heavy oil is a phenol-like liquid termed eugenol, or eugenic acid, C₁₀H₁₂O₂, sp. gr. 1.064 to 1.070

ACTION AND USES.—Used for the same purposes as cloves, more commonly, however, for introduction into an aching, carious tooth. Dose: 1 to 5 drops (0.065 to 0.3 mil)

372. PIMENTA, N.F.—PIMENTA

ALSPICE

The nearly ripe dried fruit of Pimenta officinalis Lindley, including not more than 5 per cent. of stems and foreign matter.

BOTANICAL CHARACTERISTICS.—An elegant tree about 30 feet high, evergreen. Leaves pellucid-punctate, petiolate. Flowers in racemes, white. Calyx and petals 4-fold, the latter greenish-white. Fruit a berry, covered by the roundish, persistent base of the calyx. After ripening, they lose their aromatic warmth and acquire a somewhat juniper-like taste; hence they are gathered in the unripe state.
SOURCE.—West Indies, Mexico, and South America, the principal source being Jamaica-from which it has received the name of Jamaica pepper.

DESCRIPTION OF DRUG.—Globular, about the size of a large pea; picked while yet green, becoming wrinkled and brownish on drying, with the four calyx-teeth and the short style still adherent to the apex, or a raised ring marking the position of the calyx-teeth; it is divided into two cells, each of which contains a single, brownish, plano-convex seed. The pericarp is finely tuberculated with numerous oil tubercles.

Sayre's Materia Medica part IV - Page 33
Odor spicy and agreeably pungent; taste clove-like.

Powder.—Reddish-brown. Characteristic elements: Parenchyma of endosperm, with starch and resin; parenchyma of pericarp, with starch, resin, and calcium oxalate in aggregate crystals about 10µ, in diam.; sclerenchyma with stone cells, having simple, branching pores; trichomes, short, one-celled; large oil and resin ducts; starch grains, spherical, 10µ simple or compound. See Fig. 301

CONSTITUENTS.—The properties depend upon a volatile oil and a green, acrid fixed oil, existing to the extent of 10 per cent. and 8 per cent. respectively in the pericarp, and in considerably less quantities in the embryo. The yield of total ash should not exceed: 6 per cent. of which the amount soluble in dilute HCl should not exceed 0.5 per cent.

ACTION AND USES.—Stimulant and carminative, as an adjuvant to tonic and purgative mixtures. Dose: 5 to 30 gr. (0.3 to 2 Gm.).

372a. **OLEUM PIMENTÆ** (U.S.P. IX).—A colorless, or pale yellow, volatile oil, becoming thick and reddish-brown by age. Specific gravity 1.02 to 1.05. It closely resembles oil of cloves (q.v.), but has a more pleasant and less pungent odor; taste aromatic. Consists, like oil of cloves, of a light and a heavy oil, the heavy oil being identical with eugenol.

ACTION AND USES.—Same as the other stimulant aromatic oils. Dose: 1 to 5 drops (0.065 to 0.3 mil).

OFFICIAL PREPARATION.

**Spiritus Myrciae** (U.S.P. 1890) (0.05 per cent.).

373. **JAMBUL**.—JAVA PLUM. A large tree, *Eugenia jambolana*, growing in the East Indies, where its fruit is eaten as a food. All parts are astringent, but the bark, and especially the seeds, possess, in addition, the peculiar property of arresting the formation of sugar in diabetes, and hence are "likely to prove a valuable remedy in this disease." Dose: 5 to 10 gr. (0.3 to 0.6 Gm.).

374. **OLEUM CAJ UPUTI.**—OIL OF CAJ UPUT

A volatile oil distilled from the leaves of *Melaleuca leucadendron* Linné.

BOTANICAL CHARACTERISTICS.—A tree with crooked stem and scattered branches, the branchlets drooping like those of the weeping willow; bark whitish. Leaves lanceolate, deep green, entire, from 3 to 4 inches long. Flowers small, white, inodorous, in axillary spikes.
HABITAT.—East Indies.

DESCRIPTION OF DRUG.—A light bluish-green (probably due to copper), limpid liquid having a penetrating, agreeable odor, and a warm, camphoraceous, bitter, afterward saline or cooling, taste. Specific gravity 0.912 to 0.925. It has a slightly acid reaction.

CONSTITUENTS.—The principal constituent is the hydrate of the hydrocarbon, cajuputene, C\textsubscript{10}H\textsubscript{16} (\textbf{Cajuputol}, C\textsubscript{10}H\textsubscript{16}H\textsubscript{2}O said to be identical with eucalyptol, or cineol, from eucalyptus. The commercial oil often contains a trace of copper, not in large enough quantities to be dangerous, however.
ACTION AND USES.—Highly stimulant, carminative, and a counterirritant in rheumatism. Dose: 1 to 10 drops (0.065 to 0.65 mil).

COMBRETACEÆ

375. MYROBOLANUS.—MYROBOLANS. The fruit of *Terminalia chebula*, and of other species of Terminalia growing in the East Indies. Oblong, pyriform, or roundish-oval, from 30 to 50 mm. (1 1/5 to 2 in.) in length, dark brown or orange color. Several varieties of the fruit are used occasionally as a mild laxative and astringent, but now principally in the arts for tanning, etc.

ONAGRACEÆ.—Evening Primrose Family

376. EPILOBIUM.—WILLOW-HERB. The herb of *Epilobium angustifolium* Linné. Habitat: Northern Hemisphere. It has a smooth, reddish stem, branching above, arising from a long, yellowish-white root, and bearing the purplish-pink flowers in a raceme resembling those of the willow; hence the name willow-herb. Demulcent and astringent. Dose: 30 to 60 gr. (2 to 4 Gm.).


ARALIACEÆ.-Ginseng -Family

Synopsis of Drugs from the Araliaceæ

<table>
<thead>
<tr>
<th>A. Root.</th>
<th>B. Rhizome.</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Aralia Racemosa</em>, 379 a.</td>
<td></td>
</tr>
<tr>
<td><em>Aralia Hispida</em>, 380.</td>
<td></td>
</tr>
</tbody>
</table>

378. PANAX.—GINSENG. (Official, 1840-1880). The root of *Panax quinquefoi'tium* Willdenow. Cultivated in Ohio, West Virginia, Minnesota, and quite extensively and profitably in Michigan, and exported to China, where, from its fancied resemblance to the human figure, it is supposed to possess miraculous powers in preventing and curing diseases, and where at one time it was valued at its weight in gold. It has, however, little medicinal properties except as a demulcent and aromatic stimulant; not used extensively in medicine. It is a soft, yellowish-white, fusiform root, about the thickness of the finger, with two or three equal branches below. A cross-section shows a hard central portion, surrounded by a thick, soft, white inner cortical layer; with thin bark, containing numerous reddish resin-cells; wood-wedges narrow; medullary rays broad; odor feeble; taste sweet, slightly aromatic. The sweet principle is *panaquilon*, *C*₁₂*H*₂₅*O*₉.

Preparation of Panaquilon.—Concentrate the cold infusion to a syrup, precipitate by concentrated solution of sodium sulphate, wash the precipitate thoroughly with the saline solution, then treat with alcohol, which dissolves the principle; evaporate to dryness.
379. **ARALIA NUDICAULIS** Linné.—FALSE SARSAPARILLA. WILD LICORICE. Habitat: North America. (Rhizome.) Horizontal, often 300 mm. (12 in.) in length, and about the thickness of the little finger; it has a yellowish-brown, wrinkled, and annulate bark, inclosing a yellow wood and spongy pith; somewhat aromatic; taste warm, aromatic, and sweetish. The rhizome of *Aralia racemosa*, N.F. Linné (American Spikenard) is short and from 25 to 50 mm. (1 to 2 in.) thick, marked above by prominent stem-scars and beset below with long, branching rootlets; externally pale brown, internally whitish; more aromatic and spicy than *A. nudicaulis*. Both rhizomes are used extensively in domestic practice as stimulant, diaphoretic, and alterative. Dose: 30 to 60 gr. (2 to 4 Gm.), in infusion.

380. **ARALIA HISPIDA** Ventenat.—DWARF ELDER. Habitat: United States. (Rhizome.) Diuretic; used in dropsy, etc. Dose of fluidextract: 1 to 2 fl. dr. (4 to 8 mils).

**UMBELLIFERÆ.-Parsley Family**

Herbs with hollow stems. The umbellate inflorescence—the general character of the order—gives rise to its name. The fruit, called a cremocarp (from *cremao*, to support, and *karpos*, fruit), is perhaps the most marked characteristic of the order; it originates from one ovary surmounted by 2 styles and often crowned by the limb of the calyx, and has 2 cells and 2 seeds. The entire fruit is usually ellipsoidal, but in the case of the coriander it is spherical; it divides itself into two mericarps (half-fruits) suspended by their summits from a slender axis (carpophore), usually 2-forked; each mericarp has 5 to 10 more or less prominent ridges (juga), in the furrows or grooves between which are several oil-tubes (vittæ), usually visible in cross-section; in anise there are usually 15, in coriander 2. The roots contain an abundance of aromatic resin.

**Synopsis of Drugs from the Umbelliferae**

A. *Fruits.*  
- **ANISUM**, 381.  
- **FÉNICULUM**, 382.  
- *Conium*, 383.  
- **CARUM**, 385.  
- **CORIANDRUM**, 386.  
- Anethum, 387.  
- *Pimpinella*, 391.  
- *Petroselinum*, 391.  
- *Phellandrium*, 392.  
- Cuminum, 393.  
- Carota, 394.  

B. *Leaves.*  
- Conii Folia, 384.  

C. *Volatile Oils.*  
- **OLEUM ANISI**, 381 a.  
- **OLEUM FÉNICULI**, 382 a.  
- **OLEUM CARI**, 385 a.  
- **OLEUM CORIANDRI**, 386 a.  

D. *Gum Resins.*  
- **ASAFOETIDA**, 397.  
- Galbanum, 398.  
- Ammoniacum, 399.  

E. *Seepopên.*  
- **THYMOL**, 390.  

F. *Roots.*—(Continued.)  
- Levisticum, 403.  
- *Pimpinella*, 391.  
- *Petroselinum*, 404.  
- Thapsia, 405.  
- Cicuta, 406.  
- Eryngium, 407.  
- Osmorrhiza, 408.
The ripe fruit of *Pimpinella anisum* Linné, with not more than 3 per cent. of foreign seeds and other vegetable matter.

BOTANICAL CHARACTERISTICS.—Stem about 1 foot high. Umbels on long stalks without involucre; flowers small, white; calyx obsolete; carpels 5, with filiform ridges.

HABITAT.—Levant and Egypt; extensively cultivated in Europe.

DESCRIPTION OF DRUG.—Two or three varieties have been produced by cultivation, the Spanish being the smallest, and usually preferred. In general appearance anise resembles *conium* very much, but it is distinguished from the latter in being usually longer and more ovate, the mericarps, which usually adhere together, having their five ribs more or less hairy and not jagged, and having about 15 oil tubes, of which conium has none; odor fragrant; taste aromatic, sweetish. The fruit is often accompanied with its adhering short peduncle.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Volatile oil (1½ to 3 per cent.). Ash, not exceeding 9 per cent.

ACTION AND USES.—Stimulant and aromatic carminative. Dose: 8 to 30 gr. (0.5 to 3 Gm.).

381a. **OLEUM ANISI**, U.S.—A colorless or pale yellow volatile oil, having the aromatic odor and taste of the fruit; neutral in reaction; sp. gr. 0.98 to 0.99, depending upon age. Dose: 5 drops (0.3 mil)
CONSTITUENTS.—It contains a slight quantity of a light hydrocarbon oil, but principally anethol, $C_{10}H_{12}O$, which is present in both liquid (liquid anethol) and solid form (anise camphor); by oxidation this anethol is converted into anisic acid; anethol is the principal constituent also of fennel and star anise, the most of the commercial anise oil being derived from the last-named fruit. Anethol is recognized in the National Formulary.

Preparation of Anethol.—Obtained by fractional distillation; by oxidation is converted into anisic acid.

OFFICIAL PREPARATIONS.

- **Aqua Anisi** (0.2 per cent.) Dose: 4 fl. dr. (16 mils).
- **Spiritus Anisi** (10 per cent.) 90 drops (6 mils).
- **Spiritus Aurantii Compositus** (0.5 per cent.),
- **Tinctura Opii Camphorata** (0.4 per cent.), 2 fl. dr. (8 mils).

382. FÆNICULUM.—FENNEL

The dried nearly ripe fruit of *Fœnic'ulum vulga're* Miller with not more than 4 per cent. of foreign matter.

BOTANICAL CHARACTERISTICS.—Stem somewhat furrowed, 3 feet high. Leaves much compounded, cut into fringe-like segments. Umbels with 6 to 8 rays, without involucre or involucel.

HABITAT.—Chiefly imported from Germany, although the cultivated plants in the gardens of this country* partially supply the market.

DESCRIPTION OF DRUG.—Varying in size, the longest often being 12 mm. (1/2 in.) in length; oblong, terete, a cross-section showing a nearly circular surface; the mericarps are usually separated, however, and slightly curved, their surface dark brown and smooth, with the exception of the five prominent, filiform, lighter colored ribs, the two lateral ones rather broader; in each depression is one oil tube, and on the flat side or commissure there are two. There are two prominent varieties: Saxon, or German, about 4 mm. (1/6 in.) long, dark brown, usually in half-fruits without foot-stalks. The other (Roman) is about 12 mm. (1/2 in.) in length, lighter brown, with more prominent ribs, and often in the whole state and furnished with footstalk. Both, however,
are about the same in aromatic properties, and have a warm, sweet, aromatic taste. Bitter fennel, from a wild plant of Southern France, is a small fruit, bitter and spicy. Indian fennel (6.7 mm. in length), anise-like odor used in the preparation of compound infusion of senna (2 per cent.).
CONSTITUENTS.—From 2.5 to 4 per cent. of volatile oil, almost chemically identical with that of anise. It contains phellandrene, \( \text{C}_{10}\text{H}_{16} \).

Ash, not exceeding 9 per cent.

ACTION AND USES.—Stimulant, carminative, stomachic, corrective.

Dose: 8 to 30 gr. (0.5 to 2 Gm.), in infusion or powder.

OFFICIAL PREPARATION.

Infusum Sennæ Compositum

Dose: 4 fl. dr. (120 Mils).

382a. OLEUM FŒNICULI.—A colorless or pale yellow volatile oil, having a specific gravity of 0.96. It usually solidifies at from 5º to 10ºC. (41º to 50ºF.). It has essentially the same constituents as the oil of anise. Stimulant and carminative, and a corrective of harsh, purgative preparations. Dose: 1 to 5 drops (0.06 to 0.3 mil)

OFFICIAL PREPARATIONS.

Aqua Fœniculi (0.2 per cent.) Dose: \( \frac{1}{4} \) to 1 fl. oz, (8 to 30 mils).

Pulvis Glycyrrhizæ Compositus (0.4 per cent.) \( \frac{1}{2} \) to 2 dr. (2 to 8 Gm.).

Spiritus juniperi Compositus (0.05 per cent.) 1 to 4 fl. dr. (4 to 15 mils).

383. CONIUM.—CONIUM

POISON HEMLOCK. Ger. SCHIERLINGSFRCÜHTE

The full-grown, but unripe fruit of Con’ium macula’tum Linné, carefully dried and preserved, should yield by assay, not less than 0.5 per cent. of coniine. It should not be kept longer than two years.

DESCRIPTION OF DRUG.—Gathered when full grown but yet green, the yield of alkaloid being greatest at this time. Small, roundish-ovate, laterally compressed, grayish-green. The mericarps, which are often separated, have five jagged ribs but no oil-tubes; the flat side or commissure is deeply furrowed, giving to a transverse cut surface a reniform outline. Almost odorless; taste disagreeable and somewhat acrid; when triturated with a solution of KOH, coniun emits the peculiar, mouse-like odor characteristic of the volatile alkaloid, coniine, which is liberated thereby. The total alkaloids in the fruit may reach as high as 3.5 per cent., rapidly diminishing as it ripens.

Powder.—Pale yellowish-brown. Characteristic elements: Parenchyma of endosperm, rather thick-walled with oil globules and aleurone (4 to 7 µ in diam.); aggregate
calcium oxalate (1 to 2 µ in diam.); other parenchyma with starch and chloroplastids; sclerenchyma, from fruit and stalk with bast fibers, long and thin-walled, with numerous pores; collenchymatous cells from mericarp, yellowish, nearly isodiametrical, irregularly thickened.

CONSTITUENTS.—The liquid alkaloid, coniine, C₈H₁₇N (the active constituent), methyl coniine, C₈H₁₆(CH₃)N (also liquid), conhydrine, and its isomer, pseudoconiine. Coniine is a yellowish, oily, volatile liquid (sp. gr. 0.88), very acrid, and of a strong, mouse-like odor; it is strongly basic, and is combined in the fruit with conhydric acid, from which it may instantly be freed and its odor developed in the fruit by rubbing with potassa, as noted above; its action is that of a paralyzant to the motor nervous system. Methyl coniine resembles it in action. Conhydrine is in iridescent scales, melting at 120.6ºC.

Preparation of Coniine.—Liberated from drug by distilling it with alkali. Methyl coniine and conhydrine is likely to come over with it.

Separation of Conhydrine from Coniine.—Reduce the temperature of the oily liquid containing the two by a freezing mixture. Recrystallize from ether. Occurs in iridescent scales, less poisonous than coniine.

ACTION AND USES.—Conium is narcotic and sedative; its principal action is as a paralyzant to the motor nerves. Dose: 3 to 5 gr. (0.2 to 0.3 Gm.). The alkaloid coniine is an active poison, the dose being from 1/4 to 1/2 drops (0.0164 to 0.0324 mil); dose of the hydrochlorate is probably about 1/6 gr. (0.01 Gm.).

384. CONII FOLIA.—HEMLOCK LEAVES. Grayish-green, thin, smooth, from 100 to 300 mm. (4 to 12 in.) long, twice or thrice decompound, with oblonglanceolate, acute, sharply serrate divisions; petiolate, the petiole hollow; odor mouse-like; taste disagreeable. They contain coniine in very small quantity, and are less active than the fruit, but used for the same purposes -as an anodyne and antispasmodic for controlling maniacal excitement and spasmodic affections, such as whooping-cough, etc. Dose: about 5 gr. (0.3 Gm.).
385. CARUM.—CARAWAY

CARAWAY

The dried fruit of *Car'um car'vi* Linné prevented from attacks of insects by chloroform or carbon tetrachloride.

BOTANICAL CHARACTERISTICS.—A biennial 2 feet in height, with bipinnate leaves. The umbel rarely involucrate, flowers consisting of 5 obcordate, small, white petals; carpels with 5 filiform ridges; stylopodium (the disk-like expansion of the receptacle) depressed. Fruit brownish, oblong, slightly curved.

HABITAT.—Asia; introduced into America.

DESCRIPTION OF DRUG.—The mericarps, which are usually separated, are about 4 to 5 mm. (1/6 to 1/5 in.) in length, tapering somewhat at the ends. Surface dark brown, smooth, with the exception of the five lighter colored, filiform ribs, between which are the six large, easily visible oil-tubes. A cross-section shows the pentangular seed and oiltubes. Odor and taste aromatic, agreeable. “Drawn fruits:” This name has been applied to a form of adulterated caraway—a partially exhausted fruit, whereby they have been deprived of a portion of the volatile oil. It is said that “Dutch seed” of fair quality should give over 5 per cent. of volatile oil. Exhausted fruits have been found to contain but 1.5 to 1.9 per cent. of oil. They are of much darker color than the genuine. The American seed is slightly smaller than the German. The seed cultivated in Northern Germany is too deficient in essential oil for profitable distillation, but it has a fine appearance.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Volatile Oil 4 to 5 per cent., consisting of carvone and carvene, see 385a; readily soluble in alcohol, slightly soluble in water. Ash, not more than 8 per cent.
ACTION AND USES.—Stimulant, stomachic, and carminative, and an adjuvant. Dose: 15 to 30 gr. (1 to 2 Gm.).

OFFICIAL PREPARATION.

*Tinctura Cardamomi Composita* (1.2 per cent.) Dose: 1 to 4 fl. dr. (4 to 15 mils).

385a. **OLEUM CARI**, U.S.—A limpid, colorless or pale yellow volatile oil, specific gravity 0.92, with an aromatic odor and taste, becoming acrid and of a higher specific gravity when exposed. It consists of two portions, a light hydrocarbon, *carvene*, identical with limonene, and a heavy oil, *carvone*, isomeric with thymol.

ACTION AND USES.—Stimulant, stomachic, carminative, and adjuvant. Dose: 1 to 10 drops (0.065 to 0.6 mil).

OFFICIAL PREPARATION.

*Spiritus Juniperi Compositus* (0.05 per cent.) Dose: 2 to 4 fl. dr. (8 to 15 mils).

386. **CORIANDRUM.**—CORIANDER

CORIANDER

The dried ripe fruit of *Coriandrum sativum* Linné without admixture of more than 5 per cent. of other fruit, seeds or other foreign matter.

BOTANICAL CHARACTERISTICS.—An annual herb about two feet high, with an offensive, bedbug-like odor, with smooth stem and bipinnate leaves. Calyx 5-toothed; petals obcordate (the exterior ones bifid), white, often with a pink tinge. Capsules with primary ridges obsolete, the four secondary ones prominently keeled. Fruit globose; seed covered with a loose membrane.

HABITAT.—Italy; cultivated in all parts of Europe and United States.

DESCRIPTION OF DRUG.—*Almost globular*, about 3 mm. (1/8 in.) in diameter, slightly pointed at the apex (style) and with the persistent calyx-teeth around the pedicel-scar at the base. The two concave, hemispherical *mericarps are closely united at the edge* by the woody pericarp; their outer surface is pale yellowish-brown, sometimes purplish-tinted, with five primary ribs merely indicated by wavy, slightly raised lines, and four more prominent secondary ribs. The interior of the fruit is a lenticular cavity. Odor fragrant (the odor of the
fresh plant and fruit is foetid, resembling bedbugs); taste aromatic.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Volatile oil, $\frac{1}{2}$ to 1 per cent., containing coriandrol, C$_{10}$H$_{18}$O. also dextropinene, fat, mucilage. Ash, not exceeding 7 per cent. Soluble ether extract, 0.5 per cent.

ACTION AND USES.—Feeble aromatic and stimulant; mostly used as an aromatic addition to, or a corrective of, purgative preparations. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

386a. OLEUM CORIANDRI.—An almost colorless or yellowish volatile oil with the characteristic aromatic odor and taste of the fruit; specific gravity 0.863 to 0.875; neutral in reaction. It is one of the most stable of the volatile oils in its power of resisting oxidation when exposed. It consists mainly of d-linalool or coriandrol, C$_{10}$H$_{18}$O. Stimulant and carminative, like the other aromatic oils. Dose: 1 to 5 drops (0.065 to 0.3 mil).

OFFICIAL PREPARATIONS.

Spiritus Aurantii Compositus (2.0 per cent.)
Dose: 1 to 4 fl. dr. (4 to 15 mils) linalool.

Syrupus Sennæ (0.5 per cent.)
1 fl. dr. (4 mils).

387. ANETHUM.—DILL FRUIT OR DILL SEED. The fruit of Anethum graveolens Linné, an herb of Levant and Southern Europe. Oval-oblong, usually separated into the two thin mericarps; these have a smooth brown surface, with five ribs, the two lateral ones expanded into a lighter colored, membranous wing surrounding the fruit; oil-tubes six, two on the concave inner face and one in each interval between the ribs; odor and taste caraway-like, depending upon the volatile oil, the heavy portion of which is doubtless carvol. Stimulant, carminative, and stomachic. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

387a. OLEUM ANETHI.—Pale yellow, with the characteristic odor of the fruit, and a pungent, sweetish, acid taste. It is official in the British Pharmacopoeia, where it is used...
sometimes used to prepare dill-water.

388. **APIUM.**—CELERY FRUIT. From *A'pium. graveolens* Linné, N.F., the common celery of our gardens, native to Levant and Southern Europe. Roundish-ovate, very small, brown cremocarps, generally separated into the two mericarps, which have five ribs and about six oil-tubes. They contain a volatile oil and a yellowish liquid principle, apiol, an oleoresinous substance, but somewhat analogous to the fixed oils; this apiol is chiefly extracted for medicinal use from parsley, however; it is used as an emmenagogue in doses of 10 to 12 drops (0.6 to 1 mil).

Preparation of Apiol.—The simplest process for its separation is to exhaust the fruit with petroleum-benzene, evaporate the solvent, and treat the residue with strong alcohol. On evaporation, the apiol remains. A process resulting in a pure, almost colorless apiol is published in “Pharm. Archiv,” Feb., 1899. Dose: 7½ to 23 gr. (0.5 to 1.5 Gm.).

Celery is stimulant, antispasmodic, and carminative. Dose of fl’ext.: 5 to 15 drops (0.3 to 1 mil)

389. **AJ OWAN.**—The fruit of *Ca'rum ajow'an* Bentham and Hooker. Habitat: Southern Asia and Egypt. Ovate, somewhat compressed laterally, about 2 mm- (¼/12 in.) long, with a rough, gravish-brown surface; mericarps usually separated, containing six oil-tubes. The large fruits much resemble those of common parsley, but are readily distinguished from them and other small umbelliferae by their odor and very rough surface. Odor thyme-like; taste pungent and aromatic, due to a volatile oil, 5 to 6 per cent., which consists of a terpene, cymene, and the stearopten, thymol. Ajowan is one of the commercial sources of this stearopten. Oil of ajowan, when freshly distilled, is color less, but soon acquires a slightly yellow tinge. It has an acrid, burning taste. Carminative, stomachic, having the same properties as thymol (see below). Dose: 10 to 30 gr. (0.6 to 0.2 Gm.).

390. **THYMOL.**

A phenol, C₁₀H₁₃OH, obtained by fractional distillation of oils from *Thymus vulgaris, Carum ajowan*, and *Monarda punctata*. That portion coming over at 392°F. (260°C.) is separately collected and subjected to freezing, when thymol crystallizes out; or by distilling off a greater part of the light oils or hydrocarbons and obtaining the thymol from the remaining heavier liquid by the use of caustic soda and HCl.

**DESCRIPTION.**—Small, colorless scales or large, translucent crystals of the hexagonal system having a thyme-like odor and pungent taste, somewhat caustic to the lips. It melts at about 50°C. (122°F.), but does not crystallize again until a much lower temperature is reached. Sparingly soluble in water (1:1200), but dissolves in less than its own
weight of alcohol, ether, or chloroform. The crystals have a specific gravity of 1.069, but the melted liquid is lighter than water. Chemically, thymol is considered as isopropyl-meta-cresol (C₆H₃.CH₃.OH.C₃H₇), and is closely related to carvacrol, which is regarded as isopropyl-ortho-cresol. the two differing in the relative position of the hydroxyl group. When 2 Gm. are volatilized on waterbath not more than 0.05 per cent. of residue should remain. It should melt from 48º to 51ºC.

As a solid it is heavier than water but when liquefied by fusion is lighter than water.

ACTION AND USES.—Stimulant and powerful antiseptic, generally applied externally in ointment or lotion, or in a spray, considered almost as a specific in Hookworm disease. Aristol.—A name applied to thymol iodide (q.v.). Internal dose: 1 to 2 gr. (0.065 to 0.13 Gm.).

391. PETROSELINUM RADIX, N.F.—PARSLEY. The root of Petroselium sativum Hoffman, native to Southern Europe, but cultivated extensively as a common garden plant. A tapering root from 100 to 200 mm. (4 to 8 in.) long, and about 12 mm. (½ in.) thick externally yellowish or light brown, marked with close annular rings above and longitudinal wrinkles at the lower end; fracture short, showing a thick bark dotted with resin cells, and a porous, pale yellow wood, with very irregular, white medullary rays. When fresh, it has a strong, aromatic odor, but is only faintly so when dry; taste sweetish, slightly aromatic. It is the chief source of apiol (also found in celery), a yellowish liquid somewhat analogous to the fixed oils, given as an emmenagogue in doses of 10 to 15 drops (0. 6 to 1 mil). The root is given in infusion as a carminative, and as a laxative and diuretic in nephritic and dropsical affections. Dose: 30 to 60 gr. (2 to 4 Gm.).

391a. PETROSELINUM, U.S.P. IX, applies this term to the fruit which is ovate, about 2 mm. (½₁₂ in.) long, with a greenish or brownish-gray surface, the mericarps usually separated. It contains the same principal ingredients, and is used for about the same purposes as the root. Dose: 8 to 30 gr. (0.5 to 2 Gm.). See Apiol 391b.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

Official Preparation.—Oleoresina Petroselini.

391b. APIOL (L. apinum, parsley, + ol), an oleoresinous liquid, heavier than water, of a persistent odor, distinct from the plant, and an acid, pungent taste; from certain umbelliferous fruits, chiefly parsley "seed" (fruit). A crystalline compound, C₁₂H₁₄O₄, a purified apiol (parsley camphor) is obtainable. Dill oil yields a liquid apiol which has the same composition as the crystallizable apiol from the parsley. (See also 388.)
392. **PHELLANDRIUM.**—WATER DROPWORT. FIVE-LEAVED WATER HEMLOCK. The fruit of a European aquatic plant, *Œnanthe phellan'drium* Lamarck. From 2 to 3 mm. (1/12 to 1/8 in.) in length, terete, oblong, narrowed at one end, and crowned with the stylodium; yellowish-brown or blackish-brown in color; taste aromatic, slightly acrid; odor strong, somewhat carawaylike, but disagreeable. Its aromatic properties depend upon a volatile oil, but there are indications of a narcotic alkaloid, possibly *coniine*, as the characteristic mouse-like odor is developed when the powdered seeds are rubbed with a solution of potassa. Slightly narcotic, stimulant, but more particularly used in chronic affections of the air-passages, as bronchitis, etc. Dose of powder about 5 gr. (0.3 Gm.), cautiously increased.

393. **CUMINUM**—CUMIN SEED. The fruit of *Cum'i-num cym'inum* Linné. Habitat: Egypt; cultivated in Southern Europe. Resembles caraway, but may be distinguished by its entirely different, peculiar, heavy odor, and in being whole fruits and not half-fruits, as in the latter; surface brown, rough, and hairy; ribs 18, oil-tubes 6; taste aromatic, bitterish, disagreeable. It contains a volatile oil, often used as a carminative, which consists of three different oils (two hydrocarbons and cuminol). Cumin is much stronger as a stimulant than the other umbelliferous fruits. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

394. **CAROTA.**—CARROT FRUIT. From wild plants of *Dau'cus caro'ta* Linné. Habitat: United States and Europe. Light, oval-oblong fruits, dorsally compressed; mericarps usually united, brownish, each with five hairy primary ribs and four more prominent secondary ones beset with long, white bristles; odor aromatic; taste warm, bitterish. Aromatic stimulant, diuretic. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

395. **ANGELICA ATROPURPUREA.**—AMERICAN ANGELICA. (Root.) This highly aromatic root was official in the U.S.P., 1860-70. It is similar to

396. **ANGELICA, A. OFFICINALIS.**—EUROPEAN OR GARDEN ANGELICA. (Root.) The aroma is due to a fragrant volatile oil. Also contains *angelic acid* (also found in sumbul), which has an action on the nerves. Description: Rootstock 5 to 10 cm. (2 to 4 in.) long, 2.5 to 5 cm. (1/2 in.) thick, crowned with remnants of leaf-bases, rather thick bark, curved yellowish, porous wood-wedges, a whitish pith, spong, especially in root-branches, radiating lines of large resins-ducts in the bark, bast rays destitute of bast fibers. Aromatic stimulant, stomachic, and carminative. Dose: 30 to 60 gr. (2 to 4 Gm.).
Angelica Fructus, the ripe fruits of Angelica Archangelica, Linné, and Angelica Radix, the rhizome and roots of Angelica Atropurpurea, Linné, are recognized in the National Formulary.

397. ASAFETIDA.—ASAFETIDA

ASAFETIDA

A gum-resin obtained by incising the rhizomes and roots of Ferula asafoetida, Linné, of Ferula foetida Regel, and some other species of Ferula.

BOTANICAL CHARACTERISTICS.—A gigantic herbaceous plant, 10 feet high, with radical leaves 18 inches long, bipinnate; calyx nearly obsolete, consisting of 5 minute points. Fruit broadly elliptical, thin, foliaceous, with dilated border; vittæ inconspicuous.

SOURCE.—This plant, and other species from which commercial asafetida is procured, grows in Western Thibet, Kashmir, Persia, Turkestan, and Afghanistan. The plant is cut off at the root, and the milky juice exuding is allowed to harden, the sun being excluded by branches and leaves thrown over the cut surface; when it has solidified it is scraped off, and another slice of the root is cut off to expose a fresh surface, this operation being continued until the root is exhausted.

DESCRIPTION OF DRUG.—Masses composed of white tears of various shapes and sizes, imbedded in a brown, sticky mass, along with vegetable trash and earthy impurities. These masses are at first soft, but harden on exposure, the tears breaking with a conchoidal fracture, at
first milk-white, but gradually turning pink, and at last brown. It resembles galbanum very much in appearance, but is easily distinguished by its **strong, disagreeable, alliaceous odor**, due to a sulphuretted volatile oil present to the extent of 3 to 9 per cent. On adding ammonia to a decoction of the sublimated resin, a blue fluorescence is exhibited. Taste acrid, bitter, and alliaceous.

When assayed by the official process asafoetida should contain not less than 60 per cent. of alcohol soluble constituents.

**VARIETIES.**—Besides the above-described variety, the amygdaloid, which is the most common, there are other forms in which it enters the market:

- Liquid asafoetida is a permanent, syrupy liquid, white, turning brown on exposure.

- Asafoetida in tears is the purest variety.

- Stony asafoetida, never used medicinally, consists of pieces of gypsum or other earthy material coated with a thin layer of the milkjuice.

**CONSTITUENTS.**—The greater part of asafoetida consists of a gum (20 to 30 per cent.) and resin (50 to 70 per cent.). These, with the volatile oil (3 to 9 per cent.), form with water a milky emulsion. The resin is regarded by Tschirch as the ferulic ester of asaresino-tannol, \( C_{24}H_{35}O_5 \), which, by sublimation, yields umbelliferone. There is also contained in the drug vanillin 0.06 per cent., ferulic acid, \( C_{10}H_{10}O_4 \), 1.28 per cent. The resin, when fused with KOH, yields resorcin and protocatechuic acid. The mineral impurities often amount to 40%, especially in that imported from Herat, where it is adulterated with red clay. Ash (of Resin), not to exceed 15 per cent.; (Powder), not to exceed 30 per cent.

For an exhaustive treatise on Gum Resins, etc., the student is referred to “Analysis of Resins, Balsams and Gum Resins, Their Chemistry and Pharmacognosis,” by Carl Dietrich (Scott, Greenwood & Co., London).

**ACTION AND USES.**—Asafoetida combines the properties of a stimulating **antispasmodic** with those of an efficient expectorant, making it a valuable remedy in spasmodic affections of the respiratory tract, as whooping-cough, asthma, etc. It is also a **laxative**, especially useful in cases of flatulence. Dose: 5 to 8 gr. (0.3 to 0.5 Gm.).
OFFICIAL PREPARATIONS.

Emulsum Asafoetidae (4 per cent.), Dose: 2 to 4 fl. dr. (8 to 15 mils).
Tinctura Asafoetidae (20 per cent.), 10 to 40 drops (0.6 to 2.6 mils).
Pilulae Asafoetidae (each pill containing about 3 gr. of asafoetida, with soap as an excipient) 2 to 5 pills.

398. GALBANUM.—GALBANUM. A gum-resin imported from Persia, but the botanical source of which is not definitely decided; it is generally considered, however, as a spontaneous exudation from Ferula galbaniflua Boissier et Buhse, and other species of Ferula, large plants growing in that region. It is usually met with in pale yellow or brownish tears, ranging in size from a pea to a hazelnut, occasionally separate and with a shining, varnished surface, but more generally agglutinated into a more or less hard mass by means of a darker, yellowish-brown, sometimes greenish, substance. In winter this mass has the consistence of firm wax, but in the heat of summer it becomes soft and sticky; odor balsamic; taste acrid and bitter.

CONSTITUENTS.—Besides gum and resin, it contains the interesting principle, umbelliferone (common to many umbelliferous plants), acicular crystals, producing a brilliant blue fluorescence on the addition of an alkali.

ACTION AND USES.—Stimulant, expectorant, and antispasmodic. Dose: 5 to 8 gr. (0.3 to 0.5 Gm.).

399. AMMONIACUM.—GUM AMMONIAC. A gum-resin exuding from Dore'ma ammoni'acum Don. Off. U.S.P., 1890. Roundish tears varying in size from 1.5 to 12 mm. (1/16 to 1/2 in.) in diameter, externally yellow or pale yellowish-brown. When warm it is of the consistence of wax, but it becomes brittle when cold, breaking with a milk-white, waxy fracture, translucent at the edges; odor balsamic, stronger on heating;
taste acrid, bitter, and nauseous. Lump ammoniac is an inferior quality in which the tears are agglutinated. Cake ammoniac is a very impure, dark-colored, resinous mass exuding from the roots; imbedded in it are a few tears and much vegetable and earthy trash; it is not used internally. Constituents.—Volatile oil, gum resembling acacia, resin (about 70 per cent. composed of two, one acrid resin and one indifferent resin); it yields no umbelliferone. By fusing with KOH, yields protocatechuic acid and resorcin, \( \text{C}_6\text{H}_6\text{O}_2 \). Among the derivatives of the acid resin are salicylic acid, ammonoresinotannol, etc. Similar to asafoetida—stimulating expectorant, antispasmodic and laxative—but less powerful. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

**Emulsum Ammoniaci** 4 per cent.), U.S.P. 1890 Dose: 1/2 to 1 fl. oz. (1.5 to 30 mls).

**Emplastrum Ammomaci cum Hydrargyro** (72 per cent., with mercury, oleate of mercury, dilute acetic acid, and lead plaster), U.S.P. 1890.

**400. SUMBUL.—SUMBUL**

**MUSK ROOT**

The rhizomes and roots of *Ferula sumbul* (Kauffmann) Hooker filius.

**BOTANICAL CHARACTERISTICS.**—Root fusiform; perennial stem 8 to 10 feet high. Fruit oblong-ovate, monocarpous. When punctured, the branches yield an angelica-flavored milk-juice.

**HABITAT.**—Regions north and east of British India.

**DESCRIPTION OF DRUG.**—**Transverse segments** about 10 to 50 mm. \( \frac{2}{5} \) to 2 in.) long, and 25 mm- (1 in.) thick. They have a **dusky-brown**, wrinkled bark, just beneath which is a whitish, spongy, parenchymatous layer, under the microscope dotted with brown, translucent, resinous exudations from large resin-ducts. The **brownish-yellow interior** is a **spongy mass** consisting of coarse fibers, easily separable, and indiscriminately mixed and twisted with the medullary rays; fracture short and fibrous. **Odor musk-like;** taste
sweetish at first, becoming bitter and balsamic, and leaving a sensation, of warmth in the mouth and throat. E. M. Holmes recommends that the true root be cultivated, which he thinks possible in temperate and mountainous districts in the colonies or in ordinary gardens and fields of England. The true root has a strong, persistent, musky odor.

Powder.—Characteristic elements: See Part iv, Chap. 1, B.

CONSTITUENTS.—**Sumbulic or angelic acid**, C$_5$H$_8$O$_2$, a small quantity of **valerianic acid**, C$_5$H$_{10}$O$_2$, and a small percentage of bluish volatile oil, to which, however, its odor is not due, but to two balsamic resins, or probably to some principle connected with them not yet isolated. The oil contains umbelliferone, C$_9$H$_6$O$_3$

ACTION AND USES.—**Antispasmodic** (due to the angelic and valerianic acids contained), stimulant, and tonic. Dose: 15 to 30 gr- (1 to 2 Gm.).

OFFICIAL PREPARATIONS.

<table>
<thead>
<tr>
<th>Fluidextractum Sumbul</th>
<th>Dose: 30 drops (2 Mils).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extractum Sumbul</td>
<td>5 to 15 gr. (0.3 to 1 Gm.).</td>
</tr>
</tbody>
</table>

401. **IMPERATORIA**.—**MASTERWORT**. The root of *Imperato'ria ostru'thium* Linné. Habitat: Southern Europe. A conical root with a dark brownish-gray, annulated and tuberculated bark, inclosing a whitish wood-circle and a resin-dotted central pith; odor angelica-like; taste pungent and bitter. It is a stimulant aromatic, but is rarely used in this country.

402. **LASERPITIUM**.—**WHITE GENTIAN**. The root of *Laserpi'tium latifo'lium* Linné. Habitat: Central Europe. Somewhat conical, wrinkled and annulated above, branched below; wood whitish, porous, deprived of the brown, corky layer; aromatic and bitter. Used as a tonic and stimulant. Dose: 15 to 60 gr. (1 to 4 Gm.).

403. **LEVISTICUM**.—**LOVAGE**. The root of an aromatic European herb, *Ligus'ticumlevis'ticum* Linné. This is thick, sparingly beset with fibers, and has an annulate, reddish-brown bark, inclosing a porous yellow wood; it has an aromatic odor resembling that of angelica, and a sweetish, aromatic, and pungent taste, somewhat bitter. Its medicinal properties are similar to those of angelica, being used as an aromatic stimulant and carminative, and as an adjuvant to tonic mixtures. Dose: 8 to 30 gr. (0.5 to 2 Gm.), in infusion.

The root of *Ligus'ticumfilici'num*, Osha or Colorado Cough Root, has enjoyed some notoriety as an expectorant.
404. **PIMPINELLA.**—N.F. PIMPERNEL. The root of *Pimpinella saxifraga* Linné. Habitat: Europe. Diaphoretic, diuretic, and stomachic. It has also been employed in chronic catarrh, asthma, dropsy, amenorrhea, etc., and as a masticatory in toothache. Dose: 15 to 30 gr. (1 to 2 Gm.), in infusion or powder.

405. **THAPSIA GARGANICA** Linné.—(Root.) Used chiefly as a counter-irritant in rheumatism, gout, bruises, etc.

406. **CICUTA MACULATA.**—AMERICAN WATER-HEMLOCK. WILD PARSNIP. The root and leaves of *Cicuta maculata* Linné. Poisonous, sedative, narcotic; resembles conium in action and has been used in its stead, but the two drugs should not be confounded when conium is prescribed, as it sometimes is, by its old name, cicuta. Dose: 3 to 5 gr. (0.2 to 0.3 Gm.). Children have been poisoned by eating the fresh root, which resembles parsnip in taste and smell.

407. **ERYNGIUM AQUATICUM** Linné.—WATER ERYNGO. RATTLESNAKE'S MASTER. Habitat: United States. (Root.) Diaphoretic and expectorant, and has been used as a substitute for senega. Dose of fluidextract: 20 to 40 drops (1.3 to 2.6 mils).

408. **OSMORRHIZA LONGISTYLIS** De Candolle.—SWEET CICELY. Habitat: United States and Canada. (Root.) Aromatic, stomachic, carminative, and expectorant. It contains a volatile oil identical with oil of anise. Dose: 1 to 2 dr. (4 to 8 Gm.).

**CORNACEÆ.**—Dogwood Family

409. **CORNUS FLORIDA.**—DOGWOOD. Cornus, N.F. The root-bark of *Cornus florida* Linné. Habitat: North America. Appears in pieces of various sizes, generally broken up and more or less curved; about 2 mm. (1/12 in.) in thickness when deprived of its brownish-gray cork, as it generally is, with a fawncolored outer surface; inner surface red, due to the tannin contained, plainly radially striate; **fracture short, whitish**, showing numerous striæ of brownish-yellow stone cells. Inodorous; taste astringent and bitter, the bitter principle being termed **cornin**. It yields a grayish powder, tinged with red. Tonic and astringent, and almost equal to cinchona as an **antiperiodic** in intermittent fevers. Dose: 10 to 30 gr. (0.6 to 2 Gm.). The barks of two other dogwoods, *Cor'nis circina'ta* (green osier bark or round-leaved dogwood bark) and *Cor'nis serice'a*, are often used.

410. **GARRYA FREMONTII** Torrey.—CALIFORNIA FEVER BUSH. (Leaves.) Used as a tonic and antiperiodic in chills and fevers. They contain a bitter principle similar to quinine in therapeutic action. Dose: 15 to 30 gr. (1 to 2 Gm.).
ERICACEÆ.—Heath Family

Trees or shrubs, rarely herbs; leaves generally foliaceous; flowers regular, gamopetalous, usually bell-shaped or urn-shaped; anthers two-celled, with porous dehiscence. A large order, with leaves astringent and bitter, because of the presence of glucosides. Some species contain a poisonous principle, andromedotoxin.

**Synopsis of Drugs from the Ericaceæ**

A. *Leaves.*
   - **UVA URSI**, 411.
   - Arctostaphyllos, 412.
   - Gaultheria, 413.
   - *Chimaphila*, 414.
   - Epigaea, 415.
   - Vaccinium, 416.
   - Kalmia, 417.
   - Ledum, 418.
   - Oxydendrum, 419.
   - Rhododendron, 420.

B. *Volatile Oil.*
   - **OLEUM GAULTHERIÆ**, 413 a.

411. UVA URSI.—UVA URSI

**BEARBERRY**

The dried leaves of *Arctostaphyllos u'va ur'si* (Linné) Sprengel, with not more than 5 per cent. of stems or other foreign matter.
BOTANICAL CHARACTERISTICS.—Shrubs with trailing stems. Leaves alternate, coriaceous, evergreen, obovate or spatulate, entire. Flowers in terminal racemes, nearly white; corolla urn-shaped. Fruit a red drupe.

SOURCE.—In dry, sandy, or rocky soil from Hudson’s Bay to New Jersey, in some parts of which it grows in abundance.

RELATED SPECIES.—Arctostaphylos glauca, indigenous to California (412).

DESCRIPTION OF DRUG.—Short-stalked, rather thick, coriaceous, obovate leaves, about 20 mm. (4/5 in.) in length, rounded at the apex and narrowed at the base; margin entire; surface smooth, glossy, grayishgreen above, lighter colored and reticulated below; taste astringent, bitter; odor slight. (The powder has a hay-like odor.)

They are sometimes adulterated with the leaves of Vaccinium vitis idææ (European uva ursi), distinguished from the genuine by their rounder shape, their revolute margin, which is sometimes toothed, and the dotted appearance of their under surface. Chimaphila leaves, which are occasionally mixed with uva ursi, may be readily distinguished by their greater length, their cuneiform-lanceolate shape, and their serrate edges. Leiophyllum buxifolium (sand myrtle) and Epigæa repens (trailing arbutus, 415) are also used as adulterants.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Tannic and gallic acids, and the three principles, arbutin, C₁₂H₁₆O₇, ericolin, C₃₄H₅₆O₂₁, and ursone, C₁₀H₁₆O₇ which are common to the plants of the natural order Ericaceæ. Arbutin is a bitter glucoside, occurring in colorless crystals; it is resolved by hydrolysis into glucose and hydroquinone or arctuvin, C₆H₆O₂. Ericolin is a yellow, crystalline, bitter glucoside. Ursone is in tasteless needles.

Preparation of Arbutin.—Precipitate decoction with lead acetate; filter; add H₂S evaporate; evaporate slowly, when needles crystallize out. Dilute Fe₂Cl₆ gives blue color. Dose: 5 to 1.5 gr. (0.3 to 1 Gm.).

Preparation of Ursone.—Obtained by exhausting drug with ether. The alcoholic solution of the ethereal residue yields the crystals on slow evaporation. Occurs in tasteless needles; sparingly soluble in alcohol and ether. Insoluble in water.
ACTION AND USES.—Astringent, tonic, and **diuretic**; valuable in ulcerations of the kidneys, bladder, or urinary passages. It has been recommended in cystitis, its action being due to the decomposition of arbutin in the system and the excretion of the hydroquinone, which is a powerful disinfectant and antiferment. Dose: 15 to 60 gr. (1 to 4 Gm.).

**OFFICIAL PREPARATION.**

**Fluidextractum Uvae Ursi** Dose: 15 to 60 drops (1 to 4 mils).

412. **ARCTOSTAPHYLOS GLAUCA** Lindley.—MANZANITO. This is a small California evergreen tree or shrub whose leaves are there highly esteemed as an astringent, like uva ursi.
413. **GAULTHERIA.**—**WINTERGREEN.** Checkerberry. Partridge Berry. The leaves of *Gaultheria procumbens* Linné. Habitat: Northern Hemisphere. This is a small evergreen shrub, consisting of slender, erect, reddish stems, bare below, leafy at top, rising at intervals from a creeping root to the height of eight or ten inches. Fruit a scarlet-red, berry-like, fleshy capsule. **Leaves** roundish, oval or obovate, about 37 mm. (1 1/2 in.) long, on a short pedicel; coriaceous; margin serrate, with a few appressed teeth; somewhat revolute at the edges; odor fragrant, especially when chewed; taste aromatic, astringent. The fragrance is due to a volatile oil (413a). Stimulant, astringent, and diuretic. Dose: 15 to 60 gr. (1 to 4 Gm.).

413a. **OLEUM GAULTHERIAE.**—**OIL OF WINTERGREEN.** A nearly colorless volatile oil, distilled from the fresh leaves, “consisting almost entirely of methyl salicylate, CH₃C₇H₅O₃, and nearly identical with volatile oil of betula.” The latter, according to Power, is composed entirely of methyl salicylate and is optically inactive, while the former is laevogyrate. As it comes into market it is of a brownish-yellow or reddish color and has a very agreeable, characteristic odor and taste. **Specific gravity of 1.172–1.182.** An aqueous solution gives, with ferric salts, a purplish color. It yields, with 6 parts of 70 per cent. alcohol at 20ºC., a perfectly clear solution—a property serving to detect adulterations. (Official as Methyl Salicylas, 413 b).

413b. **METHYL SALICYLAS.**—A product yielding not less than 98 per cent. of methyl salicylate (CH₃C₇H₅O₃). It is produced synthetically or obtained by distillation from *Betula lenta* Linné, or from *Gaultheria procumbens* Linné, and the source from which it is derived must be stated on the label.

Specific gravity at 25ºC.: Synthetic 1.18 to 1.185; when from Sweet Birch or Gaultheria 1.172 to 1.182.

Most of the so-called “true” oil of wintergreen is made by distilling a
mixture of wintergreen leaves and the bark of the sweetbirch.

Dose of Methyl Salicylas: 12 minims (0.75 mils), U.S.P. IX.

414. CHIMAPHILA.—CHIMAPHILA N.F.

PIPSISSEWA. PRINCE'S PINE

The dried leaves of *Chimaphila umbellata* Nuttall.

**Fig. 195.**—*Chimaphila umbellata.*
BOTANICAL CHARACTERISTICS.—A low, nearly herbaceous plant, with long, running, underground shoots. Leaves evergreen, thick, and shining, whorled, wedge-lanceolate, sharply serrate, not spotted. Flowers umbellled, on a terminal peduncle; petals rose-color; anthers violet. Capsule 2- to 5-celled.

HABITAT.—Northern Hemisphere, in dry woods.

DESCRIPTION OF DRUG.—**Oblanceolate**, about 25 to 50 mm. (1 to 2 in.) in length, **sharply serrate**, with pointed apex, **cuneiform** and entire at base; coriaceous; surfaces smooth, upper dark green, glossy, lower lighter in color; odor slight; taste astringent, slightly bitter.

Chimaphila maculata (spotted wintergreen or pipsissewa) has the same medicinal qualities, but differs physically in being oval-lanceolate, with a paler upper surface, and in being dotted with small white holes along the midrib.

RELATED PLANTS.—Pyrola rotundifolia (known as wintergreen or shin leaf), *P. elliptica* and *P. chlorantha* are used similarly to the above.

Powder.—Brownish-green. Characteristic elements: Parenchyma, mesophyll with irregular reddish-brown tannin masses, other cells with few starch grains, simple or compound, calcium oxalate crystals, aggregate (40 to 60 µ in diam.); stomata and few tracheids present.

CONSTITUENTS.—Same as uva ursi (411) with the addition of chimaphilin, *C*₂₄*H*₂₁*O*₄ (yellow, odorless, tasteless, volatile crystals), and several white crystalline principles.

Preparation of Chimaphilin.—When the leaves are distilled with water, yellow crystals are deposited in the neck of the retort. These, dissolved out with chloroform, will deposit from this solution on evaporation. Shaking out the tincture with chloroform will also dissolve out the principle.

ACTION AND USES.—Like uva ursi (411). Also used in scrofula and other cutaneous eruptions. Dose: 15 to 60 gr. (1 to 4 Gm.).

415. **EPIGAEA**.—TRAILING ARBUTUS. GRAVEL PLANT. The leaves of *Epigaea repens* Linné. Habitat: North America, on woody hillsides. Ovate, about 50 MM. (2 in.) long, with heart-shaped base and mucronate apex; coriaceous; margin entire. They contain the same three principles that uva ursi does and have the same general medicinal properties, but are particularly valuable in those cases of local irritation of the urinary organs in which they have often given relief when uva ursi and buchu had failed. They are also claimed to be highly beneficial in Ethic acid gravel. Dose: 15 to 60, gr. (1 to 4 Gm.), in decoction or fluidextract.

416. **VACCINIUM CRASSIFOLIUM** Andrzejowski.—The leaves of this indigenous shrub have properties very much resembling uva ursi and may be used in its stead.
417. **KALMIA.**—MOUNTAIN LAUREL. SPOONWOOD. The leaves of *Kal'mia latifo'lia* Linné, an evergreen shrub common on the hills and mountains of North America. They are lance-oval, acute at both ends, about 50 to 75 mm. (2 to 3 in.) in length; petiolate; coriaceous; both surfaces smooth, green. In medicinal doses kalmia is astringent, sedative to the heart, and antisyphilitic; also used externally in skin diseases. From its affirmed effect upon sheep and other small animals it is supposed to have toxic, narcotic properties, but no such principle has yet been found. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

418. **LEDUM.**—LABRADOR TEA. The leaves of *Le'dum latifo'lium* Aiton. Habitat: Canada and Northern States. Elliptic-oblong, covered beneath with a rust-colored wool. Besides the tannin and other principles common to the Ericaceæ, they contain a poisonous principle, andromedotoxin, rendering them poisonous in large doses. Astringent, tonic, and alterative. Dose: 15 to 30 gr. (1 to 2 Gm.), in infusion.

419. **OXYDENDRUM ARBOREUM** De Candolle.—SOURWOOD. The leaves of this North American tree are tonic, diuretic, and refrigerant, used in dropsy. Dose of fluidextract: 1/2 to 2 fl. dr. (2 to 8 mils).

420. **RHODODENDRON MAXIMUM** Linné.—GREAT LAUREL. (Leaves.) Tonic, diuretic, astringent, expectorant. Dose of fluidextract: 5 to 15 gr. (0.3 to 1 Gm.).

**MYRSENEÆ**

421. **EMBELIA RIBES** Burman.—The pepper-corn-like, aromatic fruit of this East Indian plant is said to be an efficient tæniafuge.

**PLUMBAGINEÆ.**-Leadwort Family

422. **STATICE.**—MARSH ROSEMARY. The root of *Stat'ice limo'niun* Linné, growing in flat marshes along the Atlantic coast of the United States. Spindle-shaped, from 300 to 600 mm. (12 to 24 in.) long, and about 25 mm. (1 in.) thick; externally rough, purplish-brown; bark thick; wood yellowish, in narrow wood-wedges; inodorous; bitter and strongly astringent. It contains about 12 per cent. of tannin and is used like catechu and kino in diarrhea, but more particularly as an astringent gargle in ulcerations of the mouth and throat, and as an injection. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

423. **BAYCURU.**—The root of *Staticebrasilien'sis* Boissier. Habitat: Brazil. One of the most powerful of astringents, chiefly used locally in gargle, injection, and lotion.

**PRIMULACEÆ.**-Primrose Family

424. **ANAGALLIS ARvensis** Linné.—SCARLET PIMPERNEL. This plant, growing in the United States and Europe, is applied locally to ulcers and employed internally in consumption, dropsy, etc. It contains a pepsin-like ferment.
SAPOTACEAE. - Sapodilla Family

425. GUTTA-PERCHA, N.F.—The concrete juice of large trees, Isonandra (or Palaquium oblongifolium), Dichop'sis gut'ta, and other species, growing in the Malay Peninsula and the East Indies. In grayish or yellowish masses, often streaked with red; hard and tenacious at ordinary temperatures, with a somewhat unctuous feeling, but at a higher temperature, or when immersed in hot water, it becomes plastic, retaining, when hard and dry, the form into which it has been molded. Upon this property its uses in the arts chiefly depend. In medicine it is used as a surgical dressing in the formation of splints, supports, etc. A Liquor Guttæ Perchæ is often applied as a protective, the evaporation of its solvent, carbon disulphide, leaving a thin, flexible coating over the wounded surface.

426. MONESIA.—An extract obtained from a South American tree, Lucu'ma glycyph'læa Martius et Mohler. Dark brown, almost black, cakes, about 25 mm. (1 in.) in thickness; very brittle, often coming into the market in broken fragments; inodorous; taste sweetish, astringent, and then acrid, its acrimony being very persistent, especially in the fauces. This acridity is due to monesin, a principle identical with saponin. Monesia also contains tannin, glycyrrhizin, and lucumin (silky needles). Stomachic stimulant, alterative, and astringent. Used in diarrhea, hemorrhages, in astringent gargles, and in powder or ointment applied to scrofulous ulcers. Dose: 5 to 20 gr. (0.3 to 1.3 Gm.).

EBENARCEÆ.- Ebony Family

427. DIOSPYROS.—Persimmon. The unripe fruit of Diospyros virgin'iana Linné. (Official, 1820-80.) Very astringent. Used in uterine hemorrhage, leucorrhoea, and sore throat. Dose: 15 to 60 gr. (1 to 4 Gm.) in infusion, syrup, or vinous tincture.

STYRACEÆ.—Storax Family

428. BENZOINUM.—BENZOTN

BENZOIN

A balsamic resin obtained from Sty'rax ben'zoin Dryander, and other species of styrax.

BOTANICAL CHARACTERISTICS.—A large tree with tomentose branches. Leaves alternate, oblong, the under surface tomentose. Inflorescence compoundly racemose; calyx 5-toothed; corolla 5-parted, gray; stamens 10, their filaments coherent at the base into a short tube.

SOURCE AND VARIETIES.—Sumatra and Java. Sumatra-Penang, grayish-brown with many white tears, odor storax-like; Siam, reddish-brown, odor vanilla-like; Palembang resembles Sumatra, but yields
more benzoic acid; false benzoin, catappa benzoin (*Terminalia angustifolia*), whitish brown.

A deciduous shrub of the Lauraceae, a native of Virginia, and called spice-wood or Benjamin tree, was at one time thought to be a source of benzoin. The berries of this tree are aromatic, and have been used as a substitute for allspice.
COLLECTION.—In Sumatra the benzoin is collected by making incisions in the tree during its seventh year, only the unhealthy trees yielding resin. The milky juice which flows first is the purest and most fragrant, but soon hardens upon exposure to the air. That which flows subsequently is brownish, and some is scraped out when the tree is cut down and split open, as it is soon killed by the process of tapping. These varieties are in common called head, belly, and feet benzoin, and have the relative value to each other of 105, 45, and 18, being esteemed according to their whiteness, semi-transparency, and freedom from admixture (Royle). A product of the younger tree furnishes a variety known as amygdalina benzoin, which contains whitish, almond-like tears diffused through its substance.

DESCRIPTION OF DRUG.—It exudes from incisions in the bark, hardening on exposure into agglutinated shining tears of a yellowish-brown or reddish-brown color; internally milk-white; usually, however, it is in various-sized pieces, having a resinous fracture, showing a mottled surface of smooth, shining white spots, tears, imbedded in the somewhat rough and porous, reddish-brown mass. It has a very agreeable odor and a slightly aromatic taste, leaving an irritating sensation in the mouth and fauces.

CONSTITUENTS.—Benzoin has the constitution of a balsam and is by some authors considered as a solid balsam; it contains resin, benzoic acid, $\text{C}_7\text{H}_6\text{O}_2$, 20 to 24 per cent., which comes off in dense white vapor when benzoin is heated and melted, and cinnamic acid, $\text{C}_9\text{H}_8\text{O}_2$ (in some varieties), detected by boiling in milk of lime, decomposing with $\text{HCl}$, and adding permanganate of potassium, when the odor of bitter almonds is given off. Siam benzoin contains vanillin, $\text{C}_8\text{H}_8\text{O}_3$, and has a vanilla-like odor. Sumatra Benzoin. Ash, not more than 2.5 per cent. Siam Benzoin. Ash, not more than 2 per cent.

Preparation of Benzoic Acid.—Obtained by simple sublimation of benzoin. Is also prepared artificially from toluol, but sometimes from phthalic acid or hippuric acid. Contamination with cinnamic acid is detected by mild oxidation when it yields the odor of oil of bitter almond.

ACTION AND USES.—Stimulant and diaphoretic, but seldom used as such except in the compound tincture of benzoin. It is used locally as a stimulant and irritant, and in tooth powders and fumigations. Dose: 9 to 30 gr. (0.5 to 2 Gm.).
OFFICIAL PREPARATIONS.

**Tinctura Benzoini Composita** (10 per cent., with aloes, storax, and tolu), Dose: 15 to 60 drops (1 to 4 mils)

**Tinctura Benzoini** (20 per cent.) 10 to 40 drops (0.6 to 2.6 mils).

**Adeps Benzoinatus** (2 Gm. digested in 100 Gm. of lard).

**OLEACEÆ.-Olive Family**

Trees or shrubs with simple leaves—illustrated by the olive, the ash, the lilac, and the privet. The olive fruit contains mannite, which is converted into olive oil on ripening.

*Fraxinus Ornus*: branch showing leaves and flowers.

Sayre's Materia Medica part IV - Page 65
MANNA

The concrete saccharine exudation from *Fraxinus ornus* Linn.

BOTANICAL CHARACTERISTICS.—A tree about 25 feet high. Leaves pinnate, leaflets 7 to 9, serrate. Panicles dense; calyx 4-cleft; corolla white, divided to the base into linear segments.

SOURCE.—The tree yielding the manna is a native of Sicily, Calabria, and Apulia. The juice exudes spontaneously, or its flow is hastened by incision. Although this is the only manna officially recognized, saccharine substances known as mannas are yielded by many other trees and plants, and are obtained from the cocoons of some insects. The manna of Scripture was doubtless a lichen which grows extensively in the Sahara and Western Asia, and which occasionally falls like rain over the adjacent country.

DESCRIPTION OF DRUG.—In stalactiform pieces from 1 to 6 inches long, or irregular fragments, yellowish or brownish-white, internally white and porous; very friable. Manna in tears is a pure kind, but manna in flakes is chiefly valued and mostly met with. Manna in sorts, minute tears, internally crystalline, and fat manna, brownish viscid, non-crystalline masses, are also met with. Odor honey-like; taste sweetish, afterward nauseous. Soluble in water and alcohol. When long kept, manna darkens and deliquesces into a liquid.

OTHER MANNAS.—Manna occurs in irregular masses, consisting of brittle and soft resin-like fragments from yellowish-white to yellowish-gray color. The quantity of the yellowish-white fragments should not be less than 40 per cent. of whole. The varieties of manna generally distinguished in our commerce are large flake, small flake and sorts.

INFERIORITY.—Inferior manna may have a greenish color due to froxin, a fluorescent glucoside resembling Tsculin. A new variety of manna from Rhodesia, probably derived from Gymnosporia deflexa is on the market.

ADMINISTRATION.—May be given to very young children as a gentle laxative. Given by dissolving in milk. When administered to adults it is combined with senna, rhubarb, and more energetic laxatives.
CONSTITUENTS.—Chiefly **mannite** (75 per cent.), a sweet principle which separates out from the boiling alcoholic solution in crystals, also sugar, dextrin, mucilage, and a **nauseous principle**, to which its laxative action is doubtless due.

ACTION AND USES.—**Gentle laxative**, usually given in combination with other purgatives. Dose: \( \frac{1}{2} \) to 2 oz. (15 to 60 Gm.).

PREPARATION.—**Infusum Sennæ Compositum**. Dose: 1 to 4 fl. Oz. (30 to 120 Mils).

430. **OLEUM OLIVÆ**.—**OLIVE OIL**

SWEET OIL

A fixed oil expressed from the ripe fruit of **O'lea europæa** Linné.

BOTANICAL CHARACTERISTICS.—A small evergreen with hard wood. Leaves short-petiolate, opposite, ovate-lanceolate, mucronate. Flowers white, in axillary clusters. Fruit a drupe, \( \frac{1}{2} \) to 1 in. long, ovoid, purple, sarcocarp firm, fleshy, filled with oil.

HABITAT.—Levant and the Mediterranean Basin and California.

DESCRIPTION OF OIL.—A pale yellow or greenish-yellow, unctuous liquid when pure, having a bland, sweetish taste, but scarcely any odor. Specific gravity 0.915 to 0.918 at 15ºC. (59ºF.). On exposure it absorbs oxygen and becomes thick and rancid and loses its color, but does not dry as does linseed oil.

The oil is obtained by crushing the ripe fruit and subjecting the pulp to strong pressure. The expressed oil is run into water and the floating oil is skimmed after a few days' subsidence (virgin oil); the expressed cake is now broken up, mixed with hot water, and again subjected to pressure, resulting in a second-grade oil. The remaining marc yields by solvents, such as carbon disulphide, or by a third expression after fermentation, a very inferior oil.

The oil is adulterated sometimes with cotton-seed oil chiefly, with oil of benne, and with peanut oil.

Preparations: Emplastrum plumbi, Unguentum diachylon. Sapo, soap, is employed in: Linimentum saponis.
From the olive is obtained the wood so famous for its capability of receiving a fine polish; used in cabinet work of various kinds. The unripe fruit is served at the table. It is prepared by repeatedly steeping it in water containing lime and ashes, then bottling in a slightly aromatic salt solution; the small French or Provence, the finest, and the large Spanish are both used for this purpose.

CONSTITUENTS.—At about 5° C. (41°F.) white crystalline granules separate out, which consist of palmitin with possibly some stearin and
arachin. The liquid portion remaining consists almost entirely of olein, $C_3H_5(OC_{18}H_{33}O)_3$, which forms about 72 per cent. of the oil. The green color is due to chlorophyll.

ACTIONS AND USES.—Nutritive and laxative, a common ingredient in laxative enemata; externally protective and emollient. Its chief use in pharmacy is in liniments, cerates, and plasters. Dose: 1 fl. Oz. (30 mls).

431. **FRAXINUS AMERICANA** Linné.—(Fraxinus, N.F.) WHITE ASH. (Bark.) Quills or curved pieces, having an ash-gray periderm and a white inner bark, and breaking with a splintery, coarsely fibrous fracture. Emmenagogue. Dose: about 15 gr. (1 Gm.).

432. **FRAXINUS SAMBUCIFOLIA** Lambert.—BLACK ASH. (Bark.) Habitat: United States. Tonic and astringent. Dose: 1 to 4 dr. (4 to 15 Gm.).


434. **LIGUSTRUM**.—PRIVET. The leaves of *Ligustrum vulgare* Linné, a shrub growing wild in the United States and Europe. Astringent; the decoction is used in sore throat, ulcerations of the mouth, stomach, and intestines.

**LOGANIACEÆ.—Logania Family**

Herbs, shrubs, or trees, with opposite, entire leaves connected by stipules or a stipular line, and with regular 4-5-merous, 4-5-androus flowers, the ovary free from the calyx. Many of the plants belonging to this order are extremely poisonous.

*Synopsis of Drugs from the Loganiaceae*

A. Seeds.
   * NUX VOMICA, 435.
   * *Ignatia*, 436.
B. Bark.
   * Hoang-nan, 437.
C. Rhizomes.
   * GELSEMIUM, 438.
   * SPIGELIA, 439.
D. Extractive.
   * Curara, 440.

435. **NUX VOMICA**.—**NUX VOMICA**

**DOG BUTTON. QUAKER BUTTON**

The dried ripe seed of *Strychnos nux vomica* Linné yielding, by assay, not less than 2.5 per cent. of alkaloids of Nux Vomica.

BOTANICAL CHARACTERISTICS.—A small tree with a crooked stem resembling a dogwood. Leaves short-petiolate, smooth, oval, mucronately, palmately, 3- to 5-
nerved. Flowers small, greenish-white, in terminal corymbs; corolla funnel-form. Fruit round, orange-like.

SOURCE.—Indigenous to the coasts of most parts of India, Burmah, Siam, and northern parts of Australia. Large quantities of the drug are

Fig. 198.—*Strychnos nux vomica*—Flowering branch and seeds.
brought into the London market from British India. The export from Bombay is considerable. Madras and Calcutta are also shipping points.

DESCRIPTION OF DRUG.—**Orbicular disks** from 18 to 25 mm. (\(3/4\) to 1 in.) in diameter, and about 4 mm. (\(1/6\) in.) thick; flat or slightly convex on one side and concave on the other, with a slightly raised margin on the concave side. On one side is a ridge (raphe) extending from a raised point in the center (hilum) to a point on the edge where the radicle is situated (chalaza). Both surfaces have a **grayish or a grayish-green, shiny, silky appearance**, due to a large number of **silky hairs**, closely pressed to the **seed** and forming a tuft around its edge. Testa thin, fragile, somewhat soft, inclosing two disks of horny, translucent or opaque, yellowish or white albumen around a large central cavity. The embryo is contained in this cavity, and consists of a short radicle and two flat, heart-shaped, veined cotyledons extending about one-fourth the distance across it. Inodorous; taste extremely bitter. **Powdered nux vomica** is yellowish-gray and has a faint, sweetish odor. Should contain 1.25 percent. of strychnine.

Considerable difficulty has been experienced in keeping nux vomica and it is recommended that the container be kept in a second container containing a layer of unslaked lime.

**Powder.**—Characteristic elements: See Part iv, Chap. 1, B.

**CONSTITUENTS.**—The total alkaloids amount from 2.5 to 3.5 per cent. They consist principally of **strychnine**, \(C_{21}H_{22}N_2O_2\), 1.25 per cent., and **brucine**, \(C_{23}H_{26}N_2O_4\), the former being in excess. These are combined in the seed with igasuric acid. A third alkaloid, igasurine, has been claimed, but it is probably simply a mixture of the other two. A glucoside, loganin, \(C_{25}H_{34}O_{14}\), has been found in the seeds, but it exists in greater quantity in the pulp surrounding the seed of the fruit. Other constituents are a concrete fixed oil, gum, wax, phosphates, and a yellow coloring matter.
**Strychnine.**—As usually found in commerce, strychnine is a white or grayish-white powder. When rapidly crystallized from an alcoholic solution, it has the form of a white granular powder; when slowly crystallized, that of an elongated octahedra, or rhombic prisms with pyramidal capping. It is officially described as “in colorless, transparent, octahedral, or prismatic crystals,” etc.

The test usually employed for its recognition is sulphuric acid with potassium bichromate; gives a deep violet or blue color. A physiological test is usually employed by toxicologists as confirmatory to the chemical tests.

**Brucine.**—Brucine occurs in rectangular octahedra containing $4\text{H}_2\text{O}$, readily soluble in alcohol; nitric acid colors blood-red, changing to orange and yellow, the yellow liquid becoming violet upon the addition of stannous chloride or ammonium or sodium sulphide. Ash, not to exceed 3.5 per cent.

Preparation of Strychnine.—Boll powdered seeds with acidulated (HCl or H$_2$SO$_4$) water. Decompose solution of alkaloidal salts by adding milk of lime, which precipitates strychnine and brucine. Wash precipitate; treat with dilute alcohol to dissolve brucine, or with alcohol or benzene to take out strychnine, thus leaving brucine in the residue. Purify with animal charcoal and reprecipitate with ammonia. Occurs in four-sided rhombic prisms; very bitter; soluble in boiling alcohol 5 parts chloroform, 110 alcohol.

**ACTION AND USES.**—Nux vomica is a tonic, spinal nervine, and a poison. In small doses it stimulates the appetite and digestion and the respiration. Dose: $\frac{1}{2}$ to 5 gr. (0.0324 to 0.3 Gm.). Strychnine represents its action fully. Brucine has the same physiological action as strychnine, but is only about one-twelfth as strong.

**OFFICIAL PREPARATIONS.**

- **Fluidextractum Nucis Vomicae,** Dose: $\frac{1}{2}$ to 5 drops (0.0324 to 0.3 mil).
- **Extractum Nucis Vomicae,** $\frac{1}{2}$ to 1 gr. (0.0324 to 0.0650 Gm.).
- **Tinctura Nucis Vomicae,** 5 to 15 drops (0.3 to 1 mil).

Druggists should never make the tincture from the fluidextract of nux vomica regardless of whether the latter is assayed or not.
STRYCHNINE AND ITS OFFICIAL PREPARATIONS.

Strychnina  
Dose: $\frac{1}{60}$ to $\frac{1}{20}$ gr. (0.001 to 0.003 Gm.).

Strychninæ Sulphas  
$\frac{1}{64}$ gr. (0.001 Gm.).

Strychninæ Nitras  
$\frac{1}{40}$ gr. (0.0015 Gm.).

436. IGNATIA, N.F.—ST IGNATIUS’ BEAN. The seeds of *Strychnos ignatia* Lindley, a tree growing in the Philippine Islands, where they are much esteemed as a medicine, and whence they were introduced to the medical world by the Jesuits, who conferred upon them the name of the founder of their order. The fruit is pear-shaped, and contains 10 to 15 of these hard, heavy seeds lying one upon the other and imbedded in a dry medullary mass, but the seeds come into market separate. Their shapes are various, owing to the manner in which they were situated in the fruit; but their general form is ovate, somewhat flattened, and more or less angular. They are about 25 mm. (1 in.) long, but considerably narrower, and have at one end a small depression indicating their point of attachment (hilum). Their testa is of a less silky nature than that of nux vomica, and of a gray-brown color. In commerce they are perfectly smooth, the testa and hairs being removed by the rubbing of the seeds against one another, and therefore the outer surface consists of dull brown or blackish horny albumen, translucent when fresh. The embryo is oblong, situated in the broad end of the seed, the cotyledons extending only about half the distance across the irregular cavity. Inodorous; taste excessively bitter.

CONSTITUENTS.—Same as nux vomica (435) but in different proportions, the strychnine existing to the extent of about 1.2 per cent. against $\frac{1}{3}$ to $\frac{1}{2}$ per cent. in nux vomica. Ignatia was once used for the preparation of this alkaloid, strychnine, but rarely at the present day, as nux vomica is imported in such large quantities and is a much cheaper source. Dose: $\frac{1}{2}$ to 5 gr. (0.0324 to 0.3 Gm.).

437. HOANG-NAN or HWANG-NAO.—TROPICAL BINDWEED. The bark of *Strychnos malaccensis* Bentham, a creeping vine growing in the mountains of Tonquin. This bark is in general use among the natives of Tonquin, Cochín-China, Venezuela, etc., as a remedy in leprosy and hydrophobia, and as an antisypilitic and alterative. First brought to the notice of the medical profession by the missionary fathers. It contains strychnine and brucine in about equal proportions, and probably has about the same range in medicine as nux vomica. Dose: $\frac{1}{2}$ to 5 gr. (0.0324 to 0.3 Gm.).

438. GELSEMIUM.—GELSEMIUM 
YELLOW JASMINE

The dried rhizome and roots of *Gelsemium sempervirens* Aiton.

BOTANICAL CHARACTERISTICS.—Stem smooth, climbing. Leaves short-petiolate, shining, ovate. Flowers in short axillary clusters, very fragrant; corolla bright yellow, funnel-form, 5-lobed.
HABITAT.—Southern United States, notably Florida.

DESCRIPTION OF DRUG.—Generally in very light and fibrous cylindrical sections, 90 to 200 mm. long, 4 to 15 mm. in diameter; externally of a brownish-yellow color, slightly wrinkled; tough, breaking with a fibrous, splintery fracture; bark thin, with silky bast fibers, adhering to the light-yellowish, porous, broadly rayed wood; the wood-cells are more or less indurated and free of starch-grains; medullary rays contain few starch-granules; pith small; odor characteristic; taste persistently bitter.

ADULTERATION.—Mixed with the true gelsemium there are sometimes found the roots of the jessamine or jasmine; as an adulterant

*Sayre's Materia Medica* part IV - Page 74
this has become known as false gelsemium. The true yellow jasmine (Jasminum fructicans Linné) is called “Gelsemium officinale” in Europe. In cross-section the false root, according to Dohme, has no indurated cells in the medulla. Its medullary rays are full of starch-grains, and the sieve-ducts at the outer end of the woody cylinder are, in the case of every woody wedge, surrounded and protected by several rows of bast fibers. The true gelsemium has no such bast fibers. Accidental admixture of stems may be detected by the latter having bundles of bast fibers near the cortex. In the rhizome the fibers are not in bundles, but in a more or less interrupted ring.

![Diagram of root cross-section](image)

**Powder.**-Microscopical elements of: See Part iv, Chap. I, B.

*Sayre's Materia Medica part IV - Page 75*
CONSTITUENTS.—Gelsemine, C_{54}H_{69}N_{4}O_{12}, gelseminine, gelseminic acid, volatile oil, resins, gallic acid, etc. Gelsemine is a brittle, white, transparent solid, soluble in alcohol, from which it crystallizes with difficulty. Gelseminine (uncrystalline) and Sempervirine, yellowish-red crystals. The latter has been separated in minute quantities (Sayre). The root yields from 0.3 to 0.5 per cent. of alkaloids. Gelseminine is rapidly growing in favor as presenting most of the benefits occurring from the use of morphine without any of the disadvantages of the latter (Ellingwood). The activity seems to reside principally in the gelseminine.

Preparation of Gelsemine.—Add acetic acid to concentrated tincture; precipitate resin with water; concentrate the aqueous filtrate; remove gelsemic acid with chloroform or ether. The acid liquid yields impure alkaloid when precipitated by Na_{2}CO_{3}. This is purified by solution in chloroform and slow evaporation. It is a white, amorphous, very bitter alkaline alkaloid; with HCl or HNO_{3} forms crystalline salts.

ACTION AND USES.—Antispasmodic, sedative, and diaphoretic. Dose: 2 to 10 gr. (0.13 to 0.6 Gm.).

OFFICIAL PREPARATIONS.

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidextractum Gelsemii</td>
<td>2 to 10 drops (0.13 to 0.6 mil)</td>
</tr>
<tr>
<td>Tinctura Gelsemii (10 per cent.)</td>
<td>2 to 15 drops (0.14 to 1 mil)</td>
</tr>
<tr>
<td>Extractum Gelsemii</td>
<td>0.01 Gm. (\frac{1}{6} gr.)</td>
</tr>
</tbody>
</table>

Fig. 204.—Spigelia—Cross-section of rhizome. (21 diam.) A, Parenchyma of cortex. B, Medulla. C, Xylem. (Photomicrograph.)
439. SPIGELIA.—SPIGELIA

PINK ROOT. CAROLINA PINK

The dried rhizome and roots of *Spigelia marilandica* Linn &

BOTANICAL CHARACTERISTICS.—Root perennial; stem simple and erect. Leaves sessile, ovate-lanceolate, acute. Flowers in a short spike; corolla red externally, yellow within, four times the length of the calyx; stamens and pistil exserted.

HABITAT.—United States, Maryland southward and westward in rich woods.

DESCRIPTION OF DRUG.—Rhizome *thin, bent, purplish-brown*, on the upper side marked with stem scars, on the lower side beset with numerous lighter colored, slender, branching rootlets. Fracture short. Odor slight, aromatic; taste sweetish, bitter, and pungent.

RELATED SPECIES.—Another species which has attracted attention as an anthelmintic is *Spigelia anthelmia* of South America and the West Indies, which in that country is said to have greater medicinal properties than the official.

A wholesale adulteration of this drug was discovered a short time ago. To the surprise of pharmacognosists this adulterant (a species of *Ruellia*) had completely replaced the official article in commerce. A cross-section of the authentic drug (rootlets and rhizome) is given in Figs. 203 and 204.

Powder.—Characteristic elements: See Part iv, Chap. I, B.
CONSTITUENTS.—A volatile alkaloid, spigeline, is the active principle. Ash, not more than 10 per cent.

Preparation of Spigeline.—Distil the powdered drug over a paraffin bath with milk of lime; collect the distillate in HCl and evaporate to dryness; crystallize from alcoholic solution.

ACTION AND USES.—A powerful anthelmintic. Dose: 15 to 60 gr. (1 to 4 Gm.).

OFFICIAL PREPARATION.

Fluidextractum Spigeliæ

Dose: 15 to 60 drops (1 to 4 mils).

440. CURARA.—CURARE. WOORARI. From Strych'носcastelnæа'na and other species of Strychnos growing in South America, where an extract is prepared by the natives as an arrow-poison. This extract is a blackish, friable solid or of extract-like consistence, having a somewhat resinous appearance, and very hygroscopic. It contains a very bitter and poisonous alkaloid, curarine. As a remedial agent curara has probably little value, although it has been used in tetanus, hydrophobia, epilepsy, and chorea. It is a strong depressant of the motor nerves, causing a gradual loss of muscular power, deepened respiration, and death by asphyxia. Dose: $\frac{1}{10}$ to $\frac{1}{2}$ gr. (0.006 to 0.02 Gm.).

Curarine ($C_{18}H_{35}N$).-From the drug Roulin obtained this principle by a very intricate process. The alkaloid is extremely deliquescent and crystallizes in prisms, soluble in water, and changes litmus feebly.

GENTIANÆ.-Gentian Family

Smooth herbs with a colorless, bitter juice, and containing little or no tannin.

Synopsis of Drugs from the Gentianæ

A. Roots.

GENTIANA, 441.
Frasera, 442.

B. Herbs.

*Chirata, 443.
Sabbatia, 444.
*Menyanthes, 445.

441. GENTIANA.—GENTIAN

GENTIAN

The dry rhizome and roots of Gentia'na lu'tea Linné.

BOTANICAL CHARACTERISTICS.—Root perennial, large; stem 2 to 3 feet high, Leaves opposite, sessile, 5- to 7-nerved, ovate-acute, more or less clasping. Flowers in
whorls, bright yellow; corolla with 5 or 6 green glands at its base; stigmas 2.

HABITAT.—Mountainous portions of Central Europe.

DESCRIPTION OF DRUG.—Cylindrical, fleshy, and very long, often 3 feet or more; it is generally cut longitudinally about 100 to 200 mm. (4 \(\frac{1}{5}\) to \(\frac{13}{5}\) in.) thick; in drying, these to 8 in.) long, and 5 to 40 mm. slices are depressed in the center and the bark overlaps; yellowish-
brown, much wrinkled longitudinally and marked transversely, especially in the upper portion, with numerous rings. Transversely the bark is rather thick, wrinkled, and contorted, separated by a black cambium line from the yellowish-brown, porous, and spongy medullium marked with indistinct medullary rays. Fracture irregular, brittle when dry, flexible and tough when damp; odor pronounced and characteristic; taste intensely bitter, sweetish, and not disagreeable.
Gentiana catesbœi, the blue gentian of the Southern States, growing in mossy swamps, is said to be little inferior to the official species. It is sometimes used to adulterate senega. Other indigenous species, as G. purpurea and G. punctata, have about the same properties as the official gentian and are used similarly. The herb G. quinqueflora is used in liver affections, chronic ague, jaundice, etc.

**Powder.**-Characteristic elements: See Part iv, Chap. I, B.

**CONSTITUENTS.**—The bitter principle is a neutral principle, *gentiopicrin*, C\(_{20}\)H\(_{30}\)O\(_{12}\), the yellow color is due to *gentisin*, C\(_{14}\)H\(_{10}\)O\(_{5}\), or *gentisic acid* (tasteless yellow prisms). The root also contains from 12 to 15 per cent. of glucose (gentianose), C\(_{16}\)H\(_{66}\)O\(_{31}\), but is remarkable in that it contains **no starch, calcium oxalate, or tannin**. Ash, not to exceed 6 per cent.

Preparation of Gentisic Acid.—The alcoholic extract is washed with water, then with ether. The residue dissolved in alcohol yields the acid on evaporation. It is in yellow, tasteless crystals, partially soluble in alcohol and ether; with ferric salts gives dark brown color.

Preparation of Gentiopicrin.—Obtained by making aqueous solution of alcoholic extract. This solution is subjected to the absorptive action of charcoal. Charcoal is then boiled with alcohol, tincture evaporated, and treated with lead-oxide to remove color. Lead removed by H\(_2\)S; solution agitated with ether. Set solution aside to crystallize. Yellowish-brown, soluble in water and dilute alcohol.

**ACTION AND USES.**—Simple bitter tonic, long known and very valuable. Dose: 5 to 30 gr. (0.3 to 2 Gm.).

**OFFICIAL PREPARATIONS.**

- **Fluidextractum Gentianæ** Dose: 5 to 30 drops (0.3 to 2 mils).
- **Extractum Gentianæ** 5 to 10 gr. (0.3 to 0.6 Gm.).
- **Tinctura Gentianæ Composita** (10 per cent., with orange-peel and cardamom), 1 to 2 fl. dr. (4 to 8 mils).

442. **FRASERA.**—AMERICAN COLUMBO. The root of *Fra'sera wal'teri* Michaux, a plant growing extensively in Southern and Western United States, especially in Arkansas and Missouri. Its root is long and spindle-shaped, but comes into market in transverse slices, irregularly circular, about 25 mm. (1 in.) in diameter; these disks consist of a central, medullary matter, yellowish-brown, shrunked in the middle, and a reddish-brown exterior; inodorous; taste at first sweet, then bitter, It may be distinguished from columbo by its greater uniformity of internal structure, the absence of concentric and radiating lines, and its purer yellow color without the green...
tinge. It occasionally comes into the market in longitudinal slices under the name of American gentian. It contains gentiopicrin and gentisic acid, but no starch or tannin. Simple bitter tonic like columbo and gentian. Dose: 15 to 30 gr. (1 to 2 Gm.).

443. CHIRATA.—CHIRATA, N.F.

CHIRETTA

The dried plant *Swertia chira'yita* Hamilton.

HABITAT.—Nepal and other parts of Northern India.

DESCRIPTION OF DRUG.—Chirata of the market consists principally of short sections of the stem and branches, orange-brown or dark purple in color, generally pressed and split, showing the yellow pith, and mixed with a few leaves and flower panicles. These stems when entire are about 4 mm. (1/6 in.) in thickness, round at base and quadrangular toward the top, jointed, the internodes being from 37 to 100 mm. (1 1/2 to 4 in.) in length; branches opposite. Inodorous when dry, but when moistened it has a perceptible odor; taste very bitter, persistent.

In the Indian bazaars there are a number of species of *Ophelia*, known by the name of Chiretta, which possess, to a greater or less degree, the bitter properties of that drug. Flückiger states: “We have frequently examined the chiretta found in the English market, but have never met with any other than the legitimate sort.” Bentley noticed, in 1874, the substitution of *O. angustifolia*, which he found by far to be less bitter than the true chiretta. J. S. Ward (“Pharm. Jour.,” 4th Series, 1, 1897) calls attention to a false chirata entering the eastern market. He recognized it as the product of *Andrographia paniculata*, nat. ord. Acanthraceæ, a plant distributed throughout India from Lucknow and Assam to Ceylon, and cultivated in the West — domestic remedy for fevers, debility, etc. Sold by herbalists in the fresh state.

Powder.—Grayish-brown. Characteristic elements: Parenchyma of medulla, slightly lignified with simple pores; sclerenchyma with fibers, long, narrow, and thick-walled; tracheids, numerous; ducts with spiral or scalariform markings; yellowish-brown pollen and stomata present.

CONSTITUENTS.—*Chiratin*, C_{26}H_{48}O_{15} (yellow, hygroscopic powder, very bitter), *ophelic acid*, C_{13}H_{20}O_{11} (a syrupy liquid, very bitter), resin, coloring matter, bitter extractive, gum, and salts. Water and alcohol extract its virtues.

ACTION AND USES.—*Bitter tonic* like the other plants of the order Gentianæ. Dose: 15 gr. (1 Gm.).

OFFICIAL PREPARATIONS.

Tinctura Chiratæ (10 per cent.) (1890), Dose: 1/2 to 2 fl. dr. (2 to 8 mils).

Fluidextractum Chiratæ 15 drops (1 Mil)
444. **SABBATIA**.—CENTAURY. (Centaurium, the dried flowering plant of Centaurium Contanrium, N.F.) Three species of this indigenous herb are more or less used in this country as tonic and antiperiodic. These are Sabba'tia angular'is Pursh (American centaury), S. paniculata Pursh, and S. Elio'tti Steudel (quinine flower); the whole plant of the two first-named species is used, the root of the last-named; they probably all contain the same principle, erythrocentaurin, $C_{27}H_{24}O_8$. Dose: about 1 dr. (4 Gm.).

445. **MENYANTHES**.—WATER SHAMROCK. BUCKBEAN (N.F.) The herb of Menyan'thes trifolia'ta Linné, an aquatic plant growing in bogs in the temperate zone of the Northern Hemisphere. Leaves ternate, rising out of the water on long petioles from a rhizome; leaflets obovate, about 50 mm. (2 in.) long, with entire margin, and smooth, green upper surface, paler beneath. It has no odor, but a very bitter taste, due to a bitter principle menyanthin, $C_{33}H_{54}O_{16}(?)$. Bitter tonic, in large doses cathartic. Employed ye in the preparation: **Vinum Aurantii Compositum**, N.F. (Elix. Aurantiorum Compositum, Germ. Pharm.). Dose: 15 to 45 gr. (1 to 3 Gm.).
SAYRE’S MATERIA MEDICA - Part V

APOCYNACEÆ.—Dogbane Family

Herbs, shrubs, or trees. mostly tropical, with a milky juice which is often drastic or poisonous. Leaves mostly opposite, exstipulate. Flowers regular, 5-merous and 5-androus, with the pollen cohering into granular, waxy masses. Fruit a pair of follicles; seeds often comose.

Synopsis of Drugs from the Apocynaceæ

A. Roots.
   * Apocynum, 446.
   Apocynum Androsæmifolium, 446 a.
B. Barks.
   Aspidosperma, 447.
   Alstonia Constricta, 448.
   Alstonia Scholaris, 449.
   Conessi, 450.

C. Seeds.
   STROPHANTHUS, 451.
D. Leaves.
   Oleander, 452.
E. Herb.
   Urechites, 453.

446. APOCYNUM.—APOCYNUM, N.F.

CANADIAN HEMP

The dried rhizome of Apocy'nun canna'binum Linné without the presence of more than 5 per cent, of stems and foreign matter.

BOTANICAL CHARACTERISTICS.—Stems much branched, 2 to 3 feet high. Leaves from oval to oblong or lanceolate, short petiolate or sessile. Inflorescence cymose; corolla greenish-white, with nearly erect lobes, the tube not longer than the calyx tube.

HABITAT.—United States.

DESCRIPTION OF DRUG.—A long, cylindrical root, somewhat contorted, about 8 mm. (1/3 in.) thick, with a rather thick light brown bark, longitudinally wrinkled and transversely fissured, and a yellowish, porous wood divided by fine medullary rays into very narrow wood-wedges; fracture short. The thick inner cortical layer has numerous lactiferous vessels scattered through it, which in the fresh state secrete a milky juice which hardens into a caoutchouc-like substance, Odor slight, or none; taste bitter, nauseous.

Apocynum androsæmifolium Linné, dogbane, resembles the above, but has a relatively thicker bark inclosing a white, porous wood, and contains, in the outer portion, stone-cell groups. By applying the phloroglucin test to a section, the groups of stone-cells are revealed, stained red. Two species sold indiscriminately.
CONSTITUENTS.—**Apocynine**, a yellowish glucoside (acting like digitalin); **apocynin**, a bitter, resin-like extractive; tannin, resin, starch, etc.

ACTION AND USES.—A **valuable diuretic** in moderate doses, in large doses emetic and cathartic, producing considerable diaphoresis and expectoration; most used and most beneficial in **dropsy**. Recently the drug has attracted some attention as a most valuable deobstruent in relieving renal congestion in the second stage of tubular nephritis. It is also a decided heart tonic. Dose as a diuretic, 4 to 5 gr. (0.3 to 0.324 Gm.); as an emetic and cathartic, is to 30 gr. (1 to 2 Gm.).

OFFICIAL PREPARATION.

**Fluidextractum Apocyni**. Dose: 15 drops (1 mil).

447. **ASPIDOSPERMA**.—**QUEBRACHO**. (U.S.P. IX.) The bark of *Aspidosper'ma quebra'cho blancho* Schlechtendal. Thick, flat pieces (from 2/5 to 1 in. in thickness), with a very thick, yellowish-gray cork, which constitutes more than one-half of its entire substance, and is separated from the lower layer by a more or less sharply defined outline, deeply fissured, and traversed by parallel yellowish lines; between
these lines are whitish dots visible in a cross-section scattered through both the outer and inner layers. Internally reddish-brown to yellow; odor slight; taste aromatic and bitter. Constituents: Aspidosperma is very rich in alkaloids, six having been discovered thus far; the most important are aspidospermine, C_{22}H_{30}N_{2}O_{2}, and quebrachine, C_{21}H_{26}N_{2}O_{2}. A peculiar sugar, quebrachite, is also present, and tannin, 3 to 4 per cent. Cardiac tonic. Its special action, however, is upon the respiration, lessening the rate and increasing the amplitude of the respiratory movements; it is chiefly used in asthmatic dyspnoea. Dose: 5 to 30 gr. (0.3 to 2 Gm.).

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

Preparation of Aspidospermine.—Treat alcoholic extract with alkaline chloroform; dissolve chloroformic extract in acidulated (H_{2}SO_{4}) water and precipitate with NaOH; dissolve precipitate (mixed alkaloids) in boiling alcohol and cool, when alkaloids will crystallize.

To separate aspidospermine, crystallize from dilute HCl, when this alkaloid will remain in the mother liquor, from which it may be removed by neutralization and recrystallization. As found in commerce, this alkaloid is a mixture of this and the other associated principles, among which quebrachine is the most important. Crude aspidospermine sulphate is a commercial article, is deliquescent and unstable; it is much more soluble in water than the alkaloid.

**Fluidextractum Aspidospermatis**  Dose: 5 to 30 drops (0.3 to 2 Mils).

448. **ALSTONIA CONSTRUCTA** F. Mueller.—AUSTRALIAN FEVER BARK. Tonic, antiperiodic. Dose of fl’ext.: 2 to 8 drops (0.13 to 0.5 mil).

449. **ALSTONIA SCHOLARIS** R. Brown.—DITA. A tree growing in the Philippine Islands, the bark of which is used in India as a substitute for cinchona. Dose of fl’ext.: 2 to 8 drops (0.13 to 0.5 mil).

450. **CONESSI**.—The bark of Holarrhena antidiysenterica Wallr. Has been used in Europe and is still extensively employed in India in dysentery. Its alkaloid, conessine, enters commerce.

451. **STROPHANTHUS**.—**STROPHANTHUS**

STROPHANTHUS

The ripe seed of Strophanthus Kombé Oliver or of Strophanthus hispidus De Candolle, deprived of its long awn.

BOTANICAL CHARACTERISTICS.—A woody climber, ascending to the tops of high trees, from which it hangs in festoons. Flowers in terminal cymes, gamopetalous, the lobes prolonged into long, tail-like points, often 8 or 9 inches long. Fruit two long follicles.
SOURCE.—The genus Strophanthus contains about 20 species, native of Africa and Asia, where it is probable that more than one of them are used for the preparation of arrow-poison.

DESCRIPTION OF DRUG.—Lance-ovoid, flattened and obtusely edged; from 7 to 20 MM. in length, about 4 mm. in breadth and about 2 MM. in thickness; externally, of a light fawn color, with a distinct, greenish tinge, silky lustrous from a dense coating of closely appressed hairs, (S. Kombe); or light to dark brown, nearly smooth and sparingly hairy (S. hispidus), bearing on one side a ridge running from about the center to the summit; fracture short and somewhat soft, the fractured surface whitish and oily; odor heavy when the seeds are crushed and moistened; taste very
bitter. U.S.P. IX.

Powder.—Characteristic elements: See Part iv, Chap. 1, B.

TEST U.S.P.—If made into the official tincture and assayed biologically the minimum lethal dose should not be greater than 0.00006 mil of tincture, or the equivalent in tincture of 0.0000005 Gm. of ouabain, for each gramme of body weight of frog. Preserve Strophanthus in tightly closed containers, adding a few drops of chloroform or carbon tetrachloride, from time to time, to prevent attack of insects.

CONSTITUENTS.—Its medical properties depend upon an intensely bitter glucoside, strophanthin, \(\text{C}_{32}\text{H}_{48}\text{O}_{16}\) (anhydrous), 2 to 2.5 per cent., choline, trigonelline, kombic acid, resin, mucilage, and a fixed oil are also present. Ash, not to exceed 5 per cent.

OUABAIN, CRYSTALLIZED.—Crystallized Strophanthin.—G. Strophanthin Thorns. \(\text{C}_{30}\text{H}_{46}\text{O}_{12} + 9\text{H}_2\text{O}\). A glucoside, obtained from Acocanthera ouabaio by Arnaud, or, as now commonly prepared, from Strophanthus gratus, in which case it is also called crystallized strophanthin, or g-strophanthin Thorns. (The official strophanthin is methyl ouabain \(\text{C}_{31}\text{H}_{48}\text{O}_{12}\).) Recent investigation shows that this alkaloid varies in proportion to water of crystallization.

Preparation of Strophanthin.—Treat powdered seeds with acidulated (HCl) alcohol; evaporate to soft extract; treat with water. The aqueous solution containing tannate is treated with lead oxide, and from the purified aqueous solution white crystals are obtained.

ACTION AND USES.—Used in all forms of cardiac disease to supplant digitalis, but is not generally regarded as its equal. It has a diuretic action similar to digitalis through its action on the circulation, and also by direct promotion of urinary secretion, and is especially indicated in cardiac dropsy as being superior to digitalis; given in the form of tincture. Dose: 1 gr. (0.065 Gm.).

OFFICIAL PREPARATION.

Tinctura Strophanthi (10 per cent.) Dose: 4 to 8 drops (0.25 to 0.50 Mil).

452. OLEANDER.—The leaves of Ne'rium odor'um, a heart stimulant belonging to the digitalis group. Oleandrin is a cardiac poison.

453. URECHITES.—YELLOW-FLOWERED NIGHTSHADE. A poisonous plant growing in the West Indies Islands. A cardiac poison not very unlike digitalis in effect. Dose of fl'ext.: 2 to 10 drops (0.13 to 0.6 mil).

ASCLEPIADEÆ.—Milkweed Family

Herbs, usually milky-juiced, with opposite or whorled entire leaves. Anthers connected to the stigma and the pollen, cohering into waxy masses which hang in pairs from the glands of the stigma. The juice contains caoutchouc.
454. **ASCLEPIAS TUBEROsa** (N.F.).—The root of *Asclepias tuberosa* Linné. Off. in U.S.P. 1890. Enters the market in transverse or longitudinal sections about 20 mm. (4/5 in.) in thickness, and of various lengths; externally pale orange-brown or grayish, wrinkled longitudinally; internally it consists of a grayish or yellowish porous wood with broad, white medullary rays; fracture tough, uneven, showing the two distinct layers of the thin bark, the inner one white; odorless; taste bitter, somewhat acrid. Diaphoretic expectorant. Dose: 15 to 60 gr. (1 to 4 Gm.). Fl'ext., off. U.S.P. 1890. dose: 15 to 60 drops (1 to 4 mils).

455. **ASCLEPIAS CORNUTI** Decaisne.—COMMON SILK-WEED or MILK-WEED. (Rhizome.) Cylindrical sections, from 6 to 25 mm. (1/4 to 1 in.) thick, beset with a few simple rootlets; externally grayish-brown, finely wrinkled, and rough from stem-scars and undeveloped branches. It breaks with a short or splintery fracture, showing a thick bark containing lactiferous vessels, and a yellowish, porous wood in narrow wood-wedges. Odorless; taste bitter and nauseous. Diuretic, alterative, and expectorant; recommended in pectoral affections and in dropsy. Dose: 15 to 60 gr. (1 to 4 Gm.), in decoction.

456. **ASCLEPIAS INCARNATA** Linné.—SWAMP MILK-WEED. Habitat: North America. An oval or globular, yellowish-brown rhizome, with a tough, white wood, and a central pith; rootlets smooth, light yellowish-brown, brittle; odorless; taste sweetish, bitter, and acrid. It contains an emetic principle, *asclepiadin*; it is also alterative and cathartic. Dose: 15 to 45 gr. (1 to 3 Gm.).

457. **ASCLEPIAS CURASSAVICA** Linné.—BLOOD FLOWER. A West Indian herb used as an emetic, in smaller doses cathartic and vermifuge. Dose of fl'ext.: 1 to 2 fl. dr. (4 to 8 mils).

458. **HEMIDESMUS**.—INDIAN SARSAPARILLA. The root of a climbing East Indian plant, *Hemidesmus indicus* R. Brown. Long, cylindrical, slender, and tortuous; externally wrinkled and fissured, dark brown; wood yellowish, separated from the thin bark by a dark, wavy cambium line. Odor sweetish, tonka-like; taste sweetish and acrid. It is used in India as an alterative, and also in Great Britain, where it is official. Dose: 30 to 60 gr. (2 to 4 Gm.), in infusion or decoction.

459. **CONDURANGO** (N.F.).—The bark of *Gonolobus condurango* Triana, a South American vine, largely used there as an alterative. It was first introduced as a medicine here as a specific in cancer, but experience has shown it to be of no value in that trouble. It is from 2 to 6 mm. (1/12 to 1/4 in.) thick, the outer surface or periderm ash-gray, with greenish or blackish lichen patches scattered over it; odor slight; taste bitter and acrid. It is given in doses of about 30 gr. (2 Gm.).

**CONVOLVULACEÆ.-Convolvulus Family**

Chiefly twining or trailing herbs, sometimes with milky juice, with alternate leaves, and regular, 5-androus flowers.

*Sayre's Materia Medica part V - Page 6*
The dried tuberous root of *Exogonium purga* (Wenderoth) Bentham, yielding, by assay, not less than 7 per cent. of resin.

**BOTANICAL CHARACTERISTICS.**—Stem brownish, smooth. Leaves long-petiolate, cordate-ovate, acuminate, entire, smooth. Peduncles axillary, 2-flowered; corolla crimson or light red, four times the length of the calyx.

**HABITAT.**—Mexico; now successfully cultivated in India.

**DESCRIPTION OF DRUG.**—A compact, heavy, hard, pear-shaped tuber, varying in size, but never larger than the fist; the larger ones are longitudinally incised to facilitate the drying, which is done over the hearths of the Indian huts, hence externally brown, smoky, more or less wrinkled, covered with thick, round warts of a somewhat lighter color; internally gray to dark brown; fracture horny and resinous; odor peculiar, smoky, partly due to the manner of drying; taste starchy, afterward slightly acrid. **Powdered jalap** is yellowish-gray, and when inhaled causes sneezing and coughing.
STRUCTURE.—Cortical layer thin, with a dense circle of resin cells near the cambium line; interior composed chiefly of parenchymatous tissue containing starch and calcium oxalate, arranged in which are concentric zones of resin cells, the broader, darker, alternate zones being formed by a closer packing of the cells; medullary rays small, but plainly visible. The false jalaps which frequently adulterate the drug in market may usually be detected by the difference in internal structure.

ADULTERATIONS.—Immature roots, roots partially deprived of resin by treatment with alcohol. These are sticky, internally darker than the genuine and other species of Ipomoea.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Besides starch, calcium oxalate, etc., jalap contains a resinous substance which consists of two portions, a soft resin, jalapin, soluble in ether, and a hard resin, constituting nine-tenths of the mixture, termed jalapurgin or convolvulin (a glucoside, C_{31}H_{50}O_{16}); this latter is supposed to be the active principle. The U.S. Pharmacopoeia (IX) has fixed the lowest limit of resin at 7 per
cent. (which includes both resins).

The varying strength in jalap may be accounted for by the fact that the roots are dug at all seasons of the year. In the fall, when the aerial stem has decayed, it is better than in the spring, at the sprouting season. Ash, not to exceed 6-5 per cent.

ACTION AND USES.—Hydragogue cathartic, generally used in dropsy in the compound powder of jalap. Dose: 15 to 30 gr. (1 to 2 Gm.).

OFFICIAL PREPARATIONS.

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulvis Jalapæ Compositus (35 per cent. with potassium bitartrate)</td>
<td>15 to 60 gr. (1 to 4 Gm.)</td>
</tr>
<tr>
<td>Resina Jalapæ</td>
<td>2 to 5 gr. (0.13 to 0.3 Gm.)</td>
</tr>
<tr>
<td>Pilulae Catharticae Compositæ</td>
<td>2 to 5 pills.</td>
</tr>
</tbody>
</table>

461a. IPOMŒA PANDURATA.—WILD JALAP. MAN-ROOT. MAN OF THE EARTH. The root of Ipomœ'a pandura'ta Meyer. Occasionally met with in commerce, in the form of longitudinal slices with an irregularly wrinkled, brownish-gray bark overlapping the white wood. The woody center is divided into narrow wood-wedges by medullary rays dotted with resin cells. Nearly inodorous; taste sweetish and bitter. Contains panaquilon (the sweet principle found in panax), mucilage, starch, resin, etc. Diuretic and cathartic. Dose: 15 to 60 gr. (1 to 4 Gm.).

461b. FALSE J ALAPS.—Ipomœa simulans (Tampico jalap), a somewhat globular root yielding a resin (tampicin), very similar to jalapin, nearly soluble in ether. I. orizabensis (fusiform or male jalap), a spindle-shaped, large, woody root, often in sections, the resin orizabini (unfortunately named jalapin) entirely soluble in ether.

462. SCAMMONIUM.—SCAMMONY

SCAMMONY

A gum resin obtained by incising the living root of Convol'vulus scammo'nia Linné.

BOTANICAL CHARACTERISTICS.—Root perennial, tapering, 3 to 4 feet long, from 9 to 12 in. in circumference at the crown, and abounding in a milky, acrid juice. Stem annual, smooth. Leaves petiolate, sagittate, entire. Pedundes cymose, 3-flowered, twice the length of the leaves; calyx-lobes with a reflexed point; corolla pale yellow. Capsule 2-celled, 4-seeded.

HABITAT.—Western Asia. Obtained in the same manner as asafoetida.

DESCRIPTION OF DRUG.—The pure, or, as it is called, the “genuine” scammony is scarce in the market, the ordinary article being impure from flour, chalk, ashes, sand, etc., mixed with the exuded milk-juice before it has entirely hardened. It usually comes in hemispherical cakes, convex on one side, about 100 to 150 mm. (4 to 6 in.) in diameter; externally dark gray or nearly black; fracture brittle, shining, somewhat rough, exhibiting a usually porous interior, lighter colored and tinged with yellow or
green. It yields a light-gray powder having a peculiar odor resembling cheese or putty; taste slight, but leaves an acrid sensation in the throat.

CONSTITUENTS.—Gum, resin, starch, scammonin, $C_{34}H_{56}O_{16}$, etc. Not less than 75 per cent. of the drug should be soluble in ether; ash not more than 3 per cent.
ACTION AND USES.—**Hydragogue cathartic**, on account of its harshness, generally given in combination. Uncertain on account of frequent impurities. Dose: 1 to 8 gr. (0.065 to 0.5 Gm.), in emulsion.

462a. SCAMMONII RADIX.—SCAMMONY ROOT

The dried root of *Convolvulus scammonia* Linné yielding, when assayed by the official process, not less than 8 per cent. of the total resins of scammony root.

SOURCE AND DESCRIPTION.—This is the root of a morning glory-like plant, a native of Levant. The root is cylindrical or somewhat tapering from 10 to 25 cm. in length and 1 to 4.5 cm. in thickness. Externally, it is grayish to reddish-brown usually distinctly twisted, deeply longitudinally furrowed and marked by distinct root scars. Fracture tough, irregular and with projecting wood-fibers. Internally somewhat mottled showing yellowish, porous wood-wedges, separated by whitish parenchyma containing starch and resin. Bark, thin, odor, slight, resembling that of jalap; taste, slightly sweet, becoming slightly acrid.

ACTION AND USES.—For its action it depends on the gum resin. Hydrogogue, cathartic, on account of its harshness it is generally given in combination. Its action is often uncertain due to adulteration.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

OFFICIAL PREPARATIONS.

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resina Scammonii</td>
<td>3 gr. (0.2 Gm.)</td>
</tr>
<tr>
<td>Extractum colocynthidis Compositum</td>
<td>7 1/2 gr. (0.5 Gm.)</td>
</tr>
</tbody>
</table>

**POLEMONIACEÆ.—**Polemonium Family

463. **POLEMONIUM REPTANS** Linné.—ABSCESS ROOT. The root of this American plant has been used as an alterative, astringent, diaphoretic, and expectorant. Dose: 30 to 60 gr. (2 to 4 Gm.).

**HYDROPHYLLACEÆ.—**Waterleaf Family

464. **ERIODICTYON.—**ERIODICTYON

YERBA SANTA. MOUNTAIN BALM. CONSUMPTIVE’S WEED

The dried leaves of *Eriodictyon Californicum* Greene.

BOTANICAL CHARACTERISTICS.—Low shrubs with alternate leaves. Calyx of narrow sepals; corolla violet or purple, occasionally white, with the filaments adherent to it; ovary 2-celled. Fruit a small capsule.
HABITAT.—California, and in mountains of Northern Mexico.

DESCRIPTION OF DRUG.—Oblong-lanceolate, from 50 to 100 mm. (2 to 4 in.) long, 10 to 30 mm. (2/5 to 1 1/5 in.) broad, with a sharp apex, and narrowed at the base into a short foot-stalk; margin sinuate or almost entire; upper surface brownish-green and varnished with a resinous coating; under surface greenish-white, hairy, with a prominent midrib and distinct reticulations; brittle, odor aromatic; taste balsamic, sweetish, free from bitterness.

RELATED SPECIES.—Eriodictyon tomentosum, growing with the other, is large and has a dense coat of short, villous hairs, becoming whitish or mustycolored with age.

Powder.—Characteristic elements: See Part iv, Chap. 1, B.

CONSTITUENTS.—Volatile oil, an acrid resin, tannin, ericolin, C_{34}H_{56}O_{21}.

ACTION AND USES—Long used in California as a stimulant balsamic expectorant. Its preparations are principally used, however, as vehicles to disguise the taste of disagreeable medicines like quinine. Dose: 15 to 30 gr. (1 to 2 Gm.).

OFFICIAL PREPARATION.

Fluidextractum Eriodictyi  Dose: 15 to 30 drops (1 to 2 Mils).

BORRAGINACEÆ.—Borage Family

465. **ALKANNA**.—ALKANET. The root of Alkan'na tinctor'ria Tausch. Habitat: Grecian Archipelago and Southern Europe. Fusiform, about 100 mm. (4 in.) long, from the thickness of a quill to that of the little finger, often crowned with soft, white, hairy root-stocks; the bark is of a dark-purple color, friable; and separates easily in thin, papery layers from the yellowish, twisted ligneous column; the wood is composed of distinct, slender woodfibers cohering together and cleft by purple, friable, medullary rays; in the commercial samples, however, it is generally more or less decayed, loose, and spongy. Odorless and tasteless. Alkanna is employed exclusively for coloring oils,
ointments, and plasters, which is accomplished by suspending it, tied up in a rag, into the melted fat. Its coloring principle has been termed alkannin; it is a red, resin-like substance, soluble in alcohol, ether, and fats, but insoluble in water.

Preparation of Alkannin.—Obtained by evaporation of ethereal tincture, or precipitating a weak alkaline aqueous solution of alkanet by an acid.

466. SYMPHYTUM.—COMFREY. The root of Sym'phytum officina'le Linné. Habitat: United States and Europe; cultivated. About 150 mm. (6 in.) or more long, and from the thickness of a quill up to an inch in diameter, often split; externally black, wrinkled; internally whitish, and horny when dry; inodorous; taste sweetish, astringent, and very mucilaginous, containing as much mucilage as, or more than, althææ, for which it may often be substituted. It is chiefly used as a demulcent in domestic cough remedies, and has been highly esteemed as a vulnerary. Dose: 2 to 4 dr. (8 to 15 Gm.).

467. BORAGO OFFICINALIS Linné.—BORAGE. Habitat: Europe. (Leaves.) They contain a large quantity of mucilage, with potassium nitrate and other salts, upon which their virtues depend. Diuretic, refrigerant, demulcent, etc. Dose of fluidextract: 1 fl. dr. (4 mils).

468. PULMONARIA OFFICINALIS Linné.—LUNGWORT. Habitat: Europe. (Leaves.) Pectoral and demulcent. Dose: 30 to 60 gr. (2 to 4 Gm.).

VERBENACEÆ.—Vervain Family

469. LIPPIA MEXICANA. The leaves of Lip’pia dul’cis Treviranus. Demulcent and expectorant. Dose; 8 to 15 gr. (0.5 to 1 Gm.)

470. VERBENA HASTATA Linné.—AMERICAN BLUE VERVAIN. (Root and Herb.) (Verbena, N.F., is the dried overground portion of the plant, collected when flowering.) The hot infusion is used as a sudorific in colds, etc. Also tonic and expectorant. Dose of fl’ext.: 30 to 60 drops (2 to 4 mils).

471. VERBENA URTICÆFOLIA Linné.—WHITE VERVAIN. Habitat: Tropical America. (Root.) Febrifuge. Credited with the cure of the opium-habit. Dose of fl’ext.: 30 to 40 drops (2 to 2.6 mils).

472. TONGA.—A drug introduced under this name has been found to be a mixture of bark, leaves, and woody fibers, tied into bundles by means of the inner bark of the cocoanut tree. The bark comes from Premna taitensis (nat. ord. Verbenaceæ), a shrubby tree having a sweet and slightly astringent inner bark, containing little volatile oil, etc. The fibrous material comes from Rhaphidophora vitiensis (nat. ord. Araceæ), a creeper having a stem about the size of a quill, containing potassium chloride, a volatile alkaloid, tongine, etc. From this mixture a fl’ext. is prepared which has proved efficient in neuralgia. Dose of fl’ext.: 1 fl. dr. (4 mils).
LABIATÆ.—Mint Family

One of the most natural groups of plants in the vegetable kingdom. Its members being so uniform, it would seem as if all of its species could be comprehended in a single genus; hence the characteristics of its different genera are very difficult to make out.

DESCRIPTION.—Herbs with opposite or whorled leaves. Flowers in axils of leaves or bracts, solitary or clustered cymes, scattered or crowded into spikes. Calyx sometimes 2-lipped, upper lip bifid, lower trifid, sometimes subregular. Corolla monopetalous, bilabiate, the upper lip entire or emarginate, the lower 3-lobed, sometimes bell- or funnel-shaped, with 4 subequal lobes (Mentha). Stamens 4, inserted on the corolla tube, didynamous (2 long and 2 short), or 2 by the abortion of the 2 tipper (Lycopus, Salvia, Rosmarinus). Ovary 4-lobed. Ovules 4. Style simple, rising from the base of the ovarian lobes. Fruit separating into 4 akenes. Stem quadrangular, with volatile oil secreted in vascular glands.

GENERAL DESCRIPTION OF DRUGS OF THE ORDER

In most instances the drug consists of dry herbs composed of leaves, or leaves and tops, with portions of stem, branches, and flowers. These are usually broken and intermixed. Odor aromatic, due to the secreted volatile oil; some species hold in solution a solid hydrocarbon (stearopten) analogous to camphor. Taste aromatic, pungent, cooling, and bitterish (marrubium). The odor and taste are frequently sufficient to distinguish the different drugs, but a knowledge of the size, shape, and marginal character of the leaves and their texture, and the character of the stem and branches is sometimes quite useful in the identification of the various drugs derived from the order.

Synopsis of Drugs from the Labiatae

A. Herbs.
   MENTHA PIPERITA, 473.
   MENTHA VIRIDIS, 474.
   Hedeoma, 475.
   Marrubium, 476.
   Melissa, 477.
   *Scutellaria, 478.
   Origanum, 479.
   Cunila, 480.
   Glechoma, 481.
   Lycopus, 482.
   Majorana, 483.
   Serpyllum, 484.
   Leonurus, 485.
   Monarda, 486.
   Hyssopus, 488.
   *Catara, 489.

B. Leaves.
   Salvia, 492.
   Rosmarinus, 493.
   *Thymus, 494.
   Orthosiphon, 495.
   Pycnanthemum, 496.
   Satureia, 497.
   Yerba Buena, 498.
   Ocimum, 499.
   Monarda Pictosula, 487.
   Betonica, 500.

C. Flowers.
   Lavandula, 501.

D. Volatile Oils.

OLEUM MENTHÆ
   PIPERITÆ, 473 a.

OLEUM MENTHÆ
   VIRIDIS, 474 a.

OLEUM Hedeomæ
   475 a.

OLEUM Origani, 479 a.

OLEUM Monardæ, 486 a.

OLEUM ROSMARINI,
   493 a.

OLEUM THYMI, 494 a.

OLEUM LAVANULÆ
   FLORUM, 501 a.

E. Stearopten.
   MENTHOL, 473 b.

F. Rhizome.
   Collinsonia, 502.
473. MENTHA PIPERITA.—PEPPERMINT

The-dried leaves and tops of *Mentha piperita* Linné.

DESCRIPTION.—Leaves petiolate, ovate, lanceolate, about 2 inches (50 mm.) long, acute, sharply serrate, glandular, nearly smooth; light or

Fig. 214.—*Mentha piperita*—Flowering branch.
dark green flowers in terminal spikes, purplish; odor strong and characteristic; taste pungent and cooling. Statistics show that 300,000 pounds of peppermint are annually consumed by the world, and that more than 90 per cent. of this is grown within 25 miles of Kalamazoo, Mich. A few miles from Fenville, Mich., there are two famous mint farms, one section covers about 1400 acres, the other about 2100 acres. The former tract is known as the “Campania Farm” the other “Mentha Farm.” A distilling plant is on the ground. An average yield of oil is about 20 pounds per acre. The “mint” industry is a specialty with peculiar features, combining farm and factory-agriculture in growing the plant, and the manufacture in separating the oil by distillation. There are about 80 “stills” in southwestern Michigan, and since there are 4000 acres of the plant under cultivation, one “still” is required for every 50 acres of peppermint.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

CONSTITUENTS.—Volatile oil, consisting of a terpene of complex composition (liquid) and menthol, C\textsubscript{10}H\textsubscript{20}O

ACTION AND USES.—Carminative and diffusive stimulant. Dose: 15 to 60 gr. (1 to 4 Gm.).

OFFICIAL PREPARATION.

\textit{Spiritus Menthae Piperitae} (1 per cent.), Dose: 15 to 30 drops (1 to 2 Mils).

473a. OLEUM MENTHAE PIPERITAE U.S.

A volatile oil distilled from peppermint. A colorless, or yellowish, or greenish-yellow liquid, turning darker and thicker by age and exposure to the air, having a strongly aromatic, pungent taste, followed by a sensation of cold when air is drawn into the mouth. Its composition is very complex, consisting of a number of terpenes, aldehydes, and acids: pinene, phellandrene, cineol, dipentene, limonene, menthone, and menthol, etc. In a freezing mixture the oil becomes cloudy and thick, and will separate crystals of menthol (473b). The oil yields not less than 5 per cent. of esters calculated as methyl acetate and not less than 50 per cent. of total menthol.

OFFICIAL PREPARATIONS.

\textit{Aqua Menthae Piperitae} (0.2 per cent.), Dose: 4 fl. dr. (15 mils)

\textit{Spiritus Menthae Piperitae} (10 per cent.), 15 to 30 drops (1 to 2 mls).

Sayre’s Materia Medica part V - Page 16
473b. MENTHOL

A secondary alcohol from the official oil of peppermint (from Mentha piperita Smith), or from Japanese or Chinese oil of peppermint (from Mentha arvensis Linné, variety piperascens Holmes, and Mentha canadensis Linné, variety glabrata Holmes). Colorless, acicular or prismatic crystals, having a strong and pure odor of peppermint, and a warm, aromatic taste, followed by a sensation of cold when air is drawn into the mouth. It is slightly soluble in water, freely soluble in olive-oil, and very soluble in alcohol, ether, chloroform, and in petroleum benzine. When menthol is triturated with about an equal part by weight of camphor, thymol or hydrated chloral, the mixture becomes liquid.

Lubulinski recommends the use of a solution of menthol in liquid paraffine for acute coryza. Dose: 0.06 Gm. (1 gr.).

474. MENTHA VIRIDIS.—SPEARMINT

The dried leaves and flowering tops of Mentha spicata Linné.

DESCRIPTION.—The leaves of the spearmint resemble those of the peppermint, but the former are rather subsessile. The branches of the spearmint are mostly light green, while those of the peppermint are often purplish. The stamens of the spearmint are exserted, while those of the peppermint are short; Odor and taste mint-like, but less cooling, quite characteristic.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

CONSTITUENTS.—Volatile oil containing carvone, C_{10}H_{14}O, limonine, etc.

ACTION AND USES.—Carminative; an antispasmodic of milder property than peppermint, often preferred in infantile cases. Dose: 15 to 60 gr. (1 to 4 Gm.), in infusion, employed in Spiritus Menthae Viridis.

OFFICIAL PREPARATION.—Spitis Menthae Piperitae
474a. OLEUM MENTHÆ VIRIDIS

A volatile oil distilled from the flowering plant of Mentha Spicata Linné (Mentha Viridis Linné) and yielding when assayed by the U.S.P. process not less than 40 per cent. by volume of carvone. It is a colorless, yellow or greenish-yellow liquid having characteristic odor and taste of spearmint.

Michigan is the chief producer of this oil in U.S.

OFFICIAL PREPARATIONS.

Aqua Menthae Viridis (0.2 per cent.).
Spiritus Menthae Viridis (10 per cent.), Dose: 30 drops (2.0 Mils).
475. HEDEOMA.—AMERICAN PENNYROYAL U.S.P. VIII

The dried leaves and tops of *Hedeoma pulegioides* Persoon.

DESCRIPTION.—Stem hairy; leaves 1/2 inch (12 mm.) long, short-petioled, oblongovate, slightly serrate; flowers in small axillary cymules, with small, pale blue, spotted, pubescent stamens; odor mint-like. Taste aromatic and pungent.
CONSTITUENTS.—Volatile oil containing hedeomol, $C_{10}H_{18}O$, and pulegone, $C_{10}H_{16}O$. The oil obtained from Mentha pulegium Linné has about the same specific gravity and optical rotation, and contains pulegone.

475 a. OLEUM HEDEOMÆ U.S. VIII—OIL OF PENNYROYAL

A volatile oil distilled from the flowering plant of *Hedeoma pulegioides* Persoon.

SOURCE AND DESCRIPTION.—Most of the oil of pennyroyal is reported as being distilled in North Carolina and in the southern and eastern parts of Ohio.

It is a pale yellow liquid, having the characteristic odor and taste of Hedeoma. Its specific gravity is 0.920 to 0.935 at 25ºC. It is soluble in 2 volumes of 70 per cent. alcohol forming a solution showing not more than a slightly acid reaction with litmus.

The principal and only constituent known definitely to exist in the oil is “pulegone,” a ketone which can be identified by its hydrated oxime.

ACTION AND USES.—Oil of pennyroyal possesses stimulant, carminative, and emmenagogue properties.

The dose is from 2 to 10 minims (0.10 to 0.60 mil).

476. MARRUBIUM.—HOREHOUND U.S.P. VIII

The dried leaves and flowering tops of *Marrubium vulgare* Linné.

DESCRIPTION.—Stem white, tomentose; leaves roundish-ovate, about 1 inch (25 mm.) long, obtuse, crenate, downy; flowers whitish, aromatic, and bitter; odor distinct and agreeable; taste aromatic and bitter.

CONSTITUENTS.—Volatile oil in minute quantity, marrubin, crystalline prisms soluble in hot water and ethereal solvents, insoluble in benzene.

Preparation of Marrubiin.—Treat the infusion with charcoal; exhaust latter with Alcohol, which dissolves marrubiin and tannin; precipitate tannin with lead oxide; exhaust precipitate with alcohol. This leaves behind insoluble tannate of lead and dissolves the bitter principle.
ACTION AND USES.—A bitter tonic, laxative when given in large doses; employed in
catarrh and chronic affections of the lungs attended by copious expectoration. Dose:
15 to 30 gr. (1 to 2 Gm.), in infusion or decoction.

477. MELISSA.—BALM. The leaves and tops of Melis'ssaofficina'lis Linné. Official
U.S.P. 1890. Margin of leaves crenate, serrate, base rounded or rather heart-shaped,
somewhat hairy; flowers in about four-flowered cymules, whitish or purplish;
aromatic, astringent, and bitterish. Constituents: Volatile oil about 0.1 per cent.,
containing citral and citronellal. Carminative, stimulant, diaphoretic. Dose: 15 to 60
gr. (1 to 4 Gm.), in infusion or decoction.

478. SCUTELLARIA, N.F.—SKULLCAP

The dried plant of Scutella'ria lateriflo'ra Linné.

DESCRIPTION.—Leaves 2 inches (50 mm.) long, somewhat ovate, serrate; stem
smooth and branched; corolla pale blue; odor slight, taste bitterish. The other species
of Scutellaria are sometimes collected as S. int'egrifolia, S. pilosa, and S. galericulata.

CONSTITUENTS.—A bitter crystalline glucoside, trace of volatile oil, tannin.

ACTION AND USES.—Tonic and antispasmodic. Dose: 30 to 60 gr. (2 to 4 Gm.), in
infusion or fl'ext.

Fluidextractum Scutellariae Dose: 30 to 60 drops (2 to 4 mils).

479. ORIGANUM.—WILD MARJ ORAM. The herb of Ori'ganum vulga're Linné,
formerly used in making the Vinum Aromaticum, U.S.P. 1880.

479a. OLEUM ORIGANI.—OIL OF ORIGANUM is a favorite among some
practitioners as an ingredient in various liniments.

480. CUNILA.—DITTANY. The herb of Cunil'amarian'a Linné. Carminative and
sudorific. Dose: 15 to 60 gr. (1 to 4 Gm.).

481. GLECHOMA.—GROUND IVY. The herb of Glecho'ma heder'a'cea Linné.
Pectoral, tonic, and diuretic. Dose: 30 to 60 gr. (2 to 4 Gm.).

482. LYCOPUS.—BUGLE. The herb of Ly'copus virgin'icus Linné, and of L.
sinuatus Elliott. Astringent, sedative. Dose: 8 to 30 gr. (0.5 to 2 Gm.).

483. MAJORANA.—SWEET MARJORAM. The herb of Ori'ganum majora'na.
Carminative, stimulant, and emmenagogue. Dose: 15 to 60 gr. (1 to 4 Gm.).

484. SERPYLLUM.—WILD THYME. The herb of Thy'mus serpyl'lum. Car.
minative, stimulant, tonic, and emmenagogue. Dose: 15 to 60 gr. (1 to 4 G m.).
485. **LEONURUS**.—MOTHERWORT. The herb of *Leonurus cardica*ca. Tonic and expectorant. Dose: 30 to 60 gr. (2 to 4 Gm.).

486. **MONARDA**.—HORSEMINT. The herb of *Monarda punctata* Linné. Carminative, emmenagogue, and nervine. Dose: 15 to 60 gr. (1 to 4 Gm.).

486a. **OLEUM MONARDÆ**.—OIL OF HORSEMINT. Used as an embrocation and as an addition to stimulating liniments.

487. **MONARDA FISTULOSA** Linné.—WILD BERGAMOT. Indigenous. (Leaves.) Introduced as a substitute for quinine; in large doses diaphoretic. Dose: 15 to 60 gr. (1 to 4 Gm.).

488. **HYSSOPUS**.—Hyssop. The herb of *Hyssopus officinalis* Linné. Carminative, sudorific, and stimulant. Dose: 15 to 60 gr. (1 to 4 Gm.).

489. **CATARIA, N.F.**—CATNIP. The herb of *Nepeta cata*ria Linné. Carminative, stimulant, tonic, and diaphoretic. Dose: 15 to 60 gr. (1 to 4 Gm.).

490. **TEUCRIUM**.—GERMANDER. The leaves and tops of *Teucrium chamasesdrys*. Aromatic stimulant; noted as an ingredient in the famous gout remedy known as Portland Powder.

491. **LAMIUM ALBUM** Linné.—DEAD NETTLE. (Herb.) An active hemostatic.

492. **SALVIA**.—SAGE, U.S.P. VIII

The dried leaves of *Salvia officinalis* Linné.

**DESCRIPTION.**—About 2 inches (50 mm.) long, ovate, obtuse, base narrow to the long petiole, thickish, wrinkled, grayish-green, soft, hairy, and reticulated and glandular beneath; odor aromatic, taste bitterish and astringent. Salvia is said to be adulterated with other species, closely resembling the official in late summer.

**CONSTITUENTS.**—Volatile oil (0.5 to 0.75 per cent.), resin, tannin, etc. The volatile oil contains pinene, cineol, and salviod, *C*<sub>10</sub>*H*<sub>18</sub>*O*.

**ACTION AND USES.**—Stimulant, tonic, astringent, vulnerary, in infusion or decoction. Dose: 15 to 60 gr. (1 to 4 Gm.).
493. **ROSMARINUS**.—ROSEMARY. The leaves of *Rosmarinus officinalis* Linné. Rigid, linear, obtuse at summit, margin entire; odor strong, balsamic, and camphoraceous.

**ACTION AND USES.**—Carminative, stimulant, diaphoretic, emmenagogue. Dose: 3 to 15 gr. (0.2 to 1 Gm.).

493a. **OLEUM ROSMARINI**, U.S.—OIL OF ROSEMARY. A volatile oil distilled from the fresh flowering tops of *Rosmarinus officinalis* Linné, yielding, when assayed by official process, not less than 2.5 per cent. of ester, calculated as bornyl acetate (C\(_{10}\)H\(_{17}\)C\(_2\)H\(_3\)O\(_2\)) and not less than 10 per cent. of total borneol (C\(_{10}\)H\(_{17}\)OH).

**DESCRIPTION.**—It is a colorless or pale yellow liquid, having the characteristic odor of rosemary and a camphoraceous taste.

**ACTION AND USES.**—In moderate amounts acts as stimulant, aromatic and carminative. In local application, it is said to do good in the treatment of chronic rheumatism, sprains, etc.

**OFFICIAL PREPARATIONS.**

- **Tinctura Lavandulae Composita** (0.2 per cent.)
  Dose: ½ to 2 fl. dr. (2 to 8 mils).
- **Linimentum Saponis** (1 per cent.).

494. **THYMUS**, N.F.—GARDEN THYME. The leaves of *Thymus vulgaris* Linné. Carminative, tonic, antispasmodic. Dose: 30 to 60 gr. (2 to 4 Gm.).

494a. **OLEUM THYMI**, U.S.—OIL OF THYME. Used as an antiseptic, etc. A volatile oil distilled from the flowering plant of *Thymus vulgaris* Linné, containing about 20 per cent. by volume of phenols. It is a colorless red liquid having a characteristic odor and taste. Specific gravity is from 0.894 to 0.929. It is soluble in 2 volumes of 80 per cent. alcohol.

**PROPERTIES.**—Commercially “red” and “white” oil are distinguished. The latter, however, is not obtained by simple rectification of the ordinary kind. “White” thyme oil, offered at a lower price than the “red,” is apt to contain much turpentine oil.

**THYMOL**.—(See Ajowan, 389.)

495. **ORTHOSIPHON STAMINEUS** Bentham.—JAVA TEA. (Leaves.) Used as a diuretic and in gravel. Dose of fl'ext.: 20 to 30 drops (1.3 to 2 Mils).
496. **PYCANTHEMUM MONTANUM** Michaux.—MOUNTAIN MINT. (Leaves.) Stimulant, tonic, and carminative. Dose: 15 to 60 gr. (1 to 4 Gm.).

497. **SATYREIA HORTENSIS** Linné.—SUMMER SAVORY. Habitat: Southern Europe; cultivated in our gardens. (Leaves.) Stimulant, carminative, and emmenagogue. Dose: 1 to 4 dr. (4 to 15 Gm.).


499. **OCIMUM BASILICUM** Linné.—SWEET BASIL. (Leaves.) Aromatic, stimulant, and tonic.

500. **BETONICA**.—The leaves of *Sta'chys beto'onica* Bentham. Used in atonic dyspepsia, rheumatism, hepatic diseases, etc. Dose: 15 to 60 gr. (1 to 4 Gm.).

501. **LAVANDULA**.—GARDEN LAVENDER. The flowers of *Lavan'dula ve'ra* De Candolle. Calyx tubular, blue-gray, hairy, 5-toothed; corolla violet-blue, hairy, and glandular on the outside, tubular and 2-lipped; odor characteristic, somewhat camphoraceous. Stimulant and carminative. Dose: 15 to 30 gr. (1 to 2 Gm.).

501a. **OLEUM LAVANDULÆ FLORUM**, U.S.—OIL OF LAVENDER FLOWERS. A volatile oil distilled from the fresh flowers of *Lavan'dula officina'lis* Chaix. French oil contains linalool, geraniol, partly free and partly as ester, principally as acetate, but in small part. Also as propionate, butyrate and valerianate. English oil contains linaloyl acetate and free linalool, also limonene and sesquiterpene, and cineol.

U. S. P. IX gives quantitative test for esters.

**ACTION AND USES.**—Used as perfumery and as flavoring agent in certain pharmaceuticals.

**OFFICIAL PREPARATIONS.**

- **Spiritus Lavandulæ** (5 per cent. of the oil).
- **Tinctura Lavandulæ Composita** (0.8 per cent. of the oil, with oil of rosemary, Saigon cinnamon, cloves, nutmeg, and red saunders). Dose: 30 drops (2.0 Mils).

OIL OF SPIKE, used as an embrocation in rheumatic affections, is obtained by distillation of the leaves, tops, etc., of Lavandula spica.

502. **COLLINSONIA**.—STONE ROOT. The rhizome of *Collinso'nia canaden'sis* Linné. Long, with short, knotty branches and numerous stem-scars; hard; internal whitish; nearly inodorous; taste bitter and nauseous. Contains resinous matter. Diaphoretic, diuretic, and irritant.
SOLANACEÆ.-Nightshade Family

Herbs or, rarely, shrubs, with rank-scented, often poisonous, foliage, and colorless juice. Leaves alternate. Stamens five, equal, inserted on the corolla. Fruit a capsule or berry. This order owes its poisonous qualities to the presence of alkaloids such as atropine.

**Synopsis of Drugs from the Solanaceae**

<table>
<thead>
<tr>
<th>A. Roots.</th>
<th>BELLADONNAE RADIX, 503.</th>
<th>Manaca, 505.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. Leaves.</td>
<td>BELLADONNAE FOLIA, 504.</td>
<td>STRAMONII FOLIA, 507.</td>
</tr>
</tbody>
</table>

**BELLADONNA.—DEADLY NIGHTSHADE**

The dried root and the dried leaves official.

**BOTANICAL CHARACTERISTICS.—**Atropa Belladonna Linné. Root perennial, fleshy, white within; stem 3 to 5 feet high, with a tinge of red. Leaves short-petiolate, ovate, acute, entire, more or less hirsute. Flowers solitary, drooping; calyx campanulate; corolla campanulate, twice the length of the calyx, greenish at the base, varying to dark purple at the border. Berry 9-lobed, violet-black; seeds uniform.

**503. BELLADONNAE RADIX**

The dried root of Atropa Belladonna Linné, yielding, when assayed by U.S.P. process, not less than 0.45 per cent. of its alkaloids.

**DESCRIPTION OF DRUG.—**Rough, irregular, longitudinally wrinkled, somewhat tapering pieces, from 12 to 25 mm. (1/2 to 1 in.) thick, of a dirty-gray color externally, internall whitish; fracture short, mealy when dry, tough when damp; odor narcotic; taste slightly sweetish, afterward bitter and acrid. Tough, woody roots, breaking with a splinterly fracture, should be rejected, also the hollow stem-bases sometimes present.

**STRUCTURE.—**The bark is rather thick, free from bast fibers, composed almost entirely of parenchymatous tissue containing starch-grains and calcium oxalate raphides; directly underneath the periderm is a darker line composed of six to eight tabular cells. In the center of the root is a small pith, surrounded in the younger root by distant wood-fibers.
scattered throughout the parenchymatous tissue; in older roots the wood-bundles are more numerous, and traversed by broad medullary rays.

Belladonna is sometimes mistaken for, or adulterated with, althœa, from which it may be distinguished by the smoothness of its outer layer (althœa has projecting fibers), by its fracture, which does not show protruding fiber-ends, and by the wood-bundles, which are readily discernible in the former, but not in the latter.
ADULTERATIONS.—Certain species of Mandragora yield very nearly allied roots both in external appearance and structure, but they are not likely to be confounded with belladonna roots.

The rhizomes of Scopola carniolica are very similar to the root of belladonna; the bark, however, of the former, is less thick, starch-grains smaller, and shape less distinct. Scopola Japonica (Japanese belladonna) is found to be similar to S. carniolica.

CONSTITUENTS.—The active principles are alkaloids, the chief of which are atropine, hyoscyamine and hyoscine. Atropine is a compound of equal amounts of the isomers, dextro- and levo-hyoscyamine into which it separates and is readily changed to dextro-hyoscyamine. In the growing belladonna the hyoscyamine is said to form in

Sayre's Materia Medica part V - Page 27
the young leaves, to be later changed to atropine.

According to the predominance of one or other of these alkaloids, and to the amounts present, the drugs of this group fall into a regular pharmacologic series, as follows:

1. Belladonna (root and leaves), the leaves containing 0.35 per cent., and the root, 0.5 per cent., of alkaloid, which is nearly all atropine. It has, therefore, a typical atropine action.

2. Scopola (root) contains 0.5 per cent. of alkaloid, about equally hyoscyamine and atropine. It acts like belladonna, but with somewhat less strength.

3. Stramonium (leaves) contains 0.35 per cent. of alkaloid, mostly hyoscyamine but with small amounts of atropine and hyoscyine. It is less stimulating to the cerebrum and may be narcotic.

4. Hyoscyamus (leaves) contain 0.08 per cent. of alkaloid, mostly hyoscyamine, with a fair amount of hyoscine, and only traces of atropine. It is rather narcotic but is weaker than the other drugs of the group (Bastido).

Ash, root, not more than 7 per cent.; leaves, not more than 20 per cent.

ACTION AND USES.—Applied externally belladonna is anodyne and anesthetic. Internally the activity of the peripheral terminations of all the secretory nerves in the body is depressed. Dropped into the eye, solutions of belladonna or atropine quickly dilate the pupil and accommodation is paralyzed. Upon the heart it has a stimulating action—toxic doses abolish the function of the cardiac muscles and the heart stops in diastole. When a 1 per cent. solution of atropine sulphate is dropped into the eye, the pupil dilates in about fifteen or twenty minutes, but takes two hours to reach the maximum dilation. The pupil gradually regains its power but is not fully restored to normal for one or two weeks.

An antagonist of atropine is physostigmine, which stimulates the ends of the third nerve. It is not powerful enough to remove the effects of atropine at once, but greatly lessens the time which the eye takes to return to normal.

Dilated pupils, dry throat, and wild cerebral symptoms are the regular warnings of overdosage. In full poisoning there is a stage of central stimulation followed by collapse. Dose: 1 to 3 gr. (0.065 to 0.2 Gm.); of atropine, \( \frac{1}{64} \) to \( \frac{1}{100} \) gr. According to Cushney, hyoscyamine is twice as active as atropine in checking secretions and in pupil dilatation.
OFFICIAL PREPARATIONS.

**Fluidextractum Belladonnæ Radicis**, Dose: 1 to 3 drops (0.065 to 0.2 Mil).
**Linimentum Belladonnæ** (95 per cent., with camphor 5 per cent.).

504. **BELLADONNÆ FOLIA**

The dried leaves of *Atropa Belladonna*, yielding not less than 0.3 per cent. of total alkaloids.

DESCRIPTION OF DRUG.—As they come into market, these leaves are crumpled and broken, of a dull brownish-green tint, the under surface paler than the upper, and with a prominent woody midrib prolonged below into a petiole, margin entire; one of the characteristics is the small, circular holes puncturing the leaves by the dropping off of corky excrescences. This, however, applies, but in a less degree, to the other narcotic leaves. It should be observed that the margins of the three narcotic leaves, belladonna, stramonium, and hyoscyamus, are quite different.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

CONSTITUENTS.—The alkaloids hyoscyamine and atropine (0.3 to 0.7 per cent.) are present. Belladonnine (oxyatropine) and other alkaloids of less importance exist, with chrysatropic acid. Ash, not exceeding 20 per cent.

ACTION AND USES.—Same as the root. Dose: 1 gr. (0.065 Gm.). The extract is employed in: Pil. Laxative Co. and Pil. Podophyl., Bellad. et Capsici, and in the following:

OFFICIAL PREPARATIONS.

**Tinctura Belladonnæ Foliorum** (10 per cent.) Dose: 5 to 15 drops (0.3 to 1 mil).
**Extractum Belladonnæ Foliorum** (1-4 per cent, alkaloid) 1/8 to 3/4 gr. (0.008 to 0.048 Gm.).
**Unguentum Belladonnæ** (1 0 percent.).

505. **MANACA**.—Portions of the root and stem of *Brunfel'siahopia'na* Bentham, a Brazilian plant. Strongly recommended in chronic subacute rheumatism as a powerful alterative. Dose: 15 to 60 gr. (1 to 4 Gm.).
**Scopola carniolica**: *a*, flowering and fruiting branch (½ nat. size); also flower, stamen, anther, pistil, fruit, seed, enlarged.

506. SCOPOLA.—SCOPOLA, U.S.P. VIII

The dried rhizome of *Scopola Carniolica* Jacquin, yielding by former U.S.P. process not less than 0.5 per cent. of its alkaloids.
DESCRIPTION OF DRUG.—From 25 to 100 mm. (1 to 4 in.) long and from 10 to 20 mm. (2/5 to 4/5 in.) thick, frequently sliced. The upper surface is beset with cup-shaped stem scars; externally, yellowish-brown to dark brown; wrinkled longitudinally, obscurely annulate, rough and nodular; fracture short, showing a yellowish-white bark, its corky layer dark-brown or pale brown, indistinctly radiate wood; pith rather hard, but becoming soft and spongy when macerated in water. As compared to belladonna root, Coblentz concludes that scopola rhizome is more constant in alkaloidal content; that it is to be preferred to belladonna root in securing preparations of uniform standard.

CONSTITUENTS.—(See Belladonna.)

ACTION AND USE.—The action of scopola is about the same as that of belladonna, but preparations of the rhizome have not been professionally recognized until recently. The extract has been used as a substitute for the extract of belladonna in making of plasters. It has been stated that scopola costs about forty dollars per ton, while belladonna costs three hundred dollars per ton.

STRAMONIUM.—THORNAPPLE, JIMSON WEED

The leaves and the seed are medicinal.

BOTANICAL CHARACTERISTICS.—Datu'ra stramo'nium Linné. Rank, narcotic, poisonous annuals. Leaves ovate, sinuate-toothed. Corolla white, funnelform, the border 5-toothed. Fruit a 4-valved, 2-celled capsule, the outer side covered with prickles, longer toward the apex.

HABITAT.—Europe, Asia, and North America; almost universally distributed.

507. STRAMONIUM.—LEAVES

The dried leaves of Datu'ra Stramo'nium or of D. tatula Linné.

DESCRIPTION OF DRUG.—These leaves, in the dried and broken state resemble somewhat those of belladonna, but are lighter in color; odor distinct, heavy, and narcotic; taste nauseous. Admixture of more than 10 per cent. of stems or other foreign matter not permitted. The drug should yield not less than 0.25 per cent. of total alkaloids.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Daturine 0.2 per cent., which, according to Ladenburg, is a mixture of atropine and hyoscyamine, with the latter usually

Sayre's Materia Medica part V - Page 31
predominating; it is said to be stronger than atropine. Ash, not to exceed 20 per cent.

ACTION AND USES.—Stramonium acts similarly to belladonna in every particular, but more strongly, and chiefly on the sympathetic system, without affecting the motor or sensory nerves. Its chief use is in asthma, the powdered leaves being sprinkled with a solution of potassium nitrate, dried, and smoked in a pipe, or ignited and the smoke inhaled. Dose: 1 to 5 gr. (0.065 to 0.3 Gm.).
OFFICIAL PREPARATIONS.

**Tinctura Stramonii**  
Dose: drops 8 (0.5 mil).

**Extractum Stramonii**—Pilular Extract  
0.01 Gm. (1/6 gr.).

**Extractum Stramonii**—Powder, Extracted  
0.01 Gm. (1/6 gr.).

**Unguentum Stramonii.**

508.—**STRAMONII SEMEN.**—Off. in U.S.P. 1890. Small, somewhat reniform, flattened seeds, with a blackish testa covered with small indentations; the embryo, curved parallel with the convex edge of the seed, is imbedded in a whitish, oily albumen. Inodorous in the whole state, but with a peculiar disagreeable odor when crushed; taste oily, slightly acrid, bitter, and nauseous. Constituents: Daturine 0.3 per cent., combined with malic (daturic) acid, scopolamine, fixed oil, etc. Dose: 1 to 3 gr. (0.065 to 0.2 Gm.). A tincture, extract, and fluidextract were official in the U.S.P. 1890.

509. **HYOSCYAMUS.**—HENBANE

The dried leaves and flowering tops of *Hyoscyamus niger* Linné, collected from plants of second year's growth, yielding by official assay not less than 0.65 per cent. of the alkaloids of Hyoscyamus.

BOTANICAL CHARACTERISTICS.—Clammy, pubescent, foetid, narcotic annuals or biennials. Leaves clasping, sinuate-toothed, and angled. Flowers sessile, in one-sided, sessile spikes in the axils of the leaves; calyx urn-shaped; corolla dull yellow, reticulated with purple veins. Fruit a 2-celled capsule.

SOURCE.—Europe and Asia; from biennial plants growing wild or cultivated in Britain, when about two-thirds of the flowers are expanded. The plant is found in the northeastern section of the United States in wet grounds, growing in great abundance about Detroit and in other parts of Michigan.

DESCRIPTION OF DRUG.—The fresh leaf is from 2 to 10 inches long, 1 to 4 inches broad, ovate to ovate-oblong in shape. On each side 3 to 5 coarse, sinuate teeth or lobes, which are rather acute and oblong or triangular. On drying, the leaves shrivel and crumple up around the very large, light-colored midribs, and generally have the large petiole still attached; they are grayish-green, and of a coriaceous texture; leaves, in the market, are very much broken; odor heavy, narcotic; taste bitter and nauseous.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.
CONSTITUENTS.—By distillation the leaves yield a very poisonous volatile oil, but the active principles are **hyoscyamine**, $\text{C}_{17}\text{H}_{23}\text{NO}_3$ (crystalline), and **hyoscine**, $\text{C}_{17}\text{H}_{21}\text{NO}_4$ (amorphous). They also contain about 2 per cent. of potassium nitrate, which causes them to crackle when thrown in the fire. Ash, not exceeding 30 per cent.

Preparation of Hyoscyamine from Seed.—First extract fatty matter; acidulate with HCl; evaporate; wash acid solution with benzene. Neutralize solution with NH$_4$OH, shake out with chloroform, and evaporate latter solvent.
ACTION AND USES.—Anodyne, hypnotic, narcotic. The action of hyoscyamus is that of its alkaloid, hyoscyamine, which acts like atropine but is less irritant and more calmative and hypnotic. Hyoscine is a decided anodyne and hypnotic. The extract in the form of a suppository is frequently employed to relieve the pain of hemorrhoids, and a poultice made from the leaves may be employed to allay the pain of cancerous and other ulcers. Dose of leaves: 5 to 15 gr. (0.3 to 1 Gm.); Hyoscyamine salts, 1/100 gr. (0.0006 Gm.); Hyoscine hydrobromate (Scopolamine hydrobromate), 1/100 gr. (0.0006 Gm.).

RELATED SPECIES.—Hyoscyamus pallidus (flowers pale yellow), H. agrestis (flowers few, leaves smaller), and H. albus (flowers white). The latter is used indiscriminately in France with the niger, with which it appears to be identical in medicinal properties.

VARIETIES.—There are two varieties of henbane, the annual and biennial. The former when properly grown are not devoid of active properties. The official plant is susceptible of considerable diversity of character. causing varieties which have been considered by some as distinct species, and by cultivation differing somewhat in medical properties.

OFFICIAL PREPARATIONS.

Tinctura Hyoscyami (10 per cent.), Dose: 10 to 60 drops (0.6 to 4 mils).
Fluidextractum Hyoscyami 1 to 3 gr. (0.065 to 0.2 Gm.).
Extractum Hyoscyami 5 to 15 drops (0.3 to 1 mil).

510. HYOSCYAMI SEMEN (unofficial).—Used for the same purposes as the leaves and contain the same alkaloids, but in larger proportion, together with a large quantity of fixed oil and a bitter glucoside, hyoscyopicrin. They are small, reniform, and have a peculiar gray-brown surface, much wrinkled and finely pitted; near the raised portion of the testa they are rather sharp (distinction from stramonium seed). The embryo is curved so as to form a figure 9, the lower part of which is the radicle, and is surrounded by a whitish, oily albumen. Odorless in entire state, but when rubbed, of a distinctly narcotic odor; taste oily and bitter.

511. TABACUM.—TOBACCO. The leaves of Nicotia'na taba'cum Linné. Off. U.S.P. 1890. Large, oval, or oval-lanceolate leaves, often 500 mm. (20 in.) long when entire, but they are more generally somewhat broken; brown; thin; friable; the glandular hairs, so thick on the leaves when fresh, are scarcely discernible; short-petiolate; odor peculiar, heavy, narcotic; taste strong, bitter, and acrid. Constituents: Nicotine, C_{10}H_{14}N_{2}, nicotianine (a camphor), bitter extractive, salts, resin, etc. Nicotine is a volatile liquid alkaloid and a virulent poison; there is hardly any of it contained in Turkish tobacco; by heat it is decomposed, yielding various pyridine
compounds, hydrocyanic and acetic acids, etc.; these pass off in the smoke; the chief of these compounds are pyridine (in smoke from pipes), collidine (from cigars), lobeline, coniine, piperidine, sparteine, trimethylamine, etc.

Preparation of Nicotine.—Concentrated infusion made with acidulated water is treated with KOH and shaken with ether. The ethereal solution is precipitated with oxalic acid; the oxalate of the alkaloid thus precipitated is dissolved in boiling alcohol; evaporate to a syrup, agitate with ether, and make alkaline with KOH. On fractional distillation the colorless, oily alkaloid remains. It is very unstable.

Narcotic, sedative, diuretic, and emetic. It is rarely used in medicine. Dose: 1/2 to 2 gr. (0.0324 to 0.13 Gm.). Oil of tobacco is a pharmaceutical product, official in the U.S.P. in 1870, obtained by destructive distillation of coarsely powdered tobacco; it is a tarry liquid of offensive odor. Considerable oil is obtained by distilling the leaves with water. It contains nicotine (a dark, oily liquid).

512. DUBOISIA.—DUBOISIA. The leaves of Duboi'siamyopoporoides R. Brown, a tall Australian shrub or small tree. The medicinal qualities of the leaves make the plant related to hyoscyamus and other narcotic plants of this order Lanceolate, 75 to 100 mm. (3 to 4 in.) long and 12 to 25 mm. (1/2 to 1 in.) broad, tapering below into a short petiole; midrib prominent; margin entire; they are generally seen, however, in broken fragments of a brownish-green color; inodorous; taste bitter. They contain duboisine (a mixture of hyoscyamine and atropine), and their action is, therefore, nearly identical with that of belladonna, except that they are less of a cerebral excitant and more calmative and hypnotic.

513. PICI.—The stems and leafy branches of a Chilian shrub, Fabiana imbricata Ruiz et Pavon. A terebinthinate diuretic, used in gravel, cystitis, and diseases of the genito-urinary tract when the kidneys are not inflamed. Dose of fluidextract: 30 drops (2 Mils).

514. DULCAMARA, N.F.—BITTERSWEET. WOODY NIGHTSHADE. The young branches of Sola'nun dulcamara Linné. Off. U.S.P. 1890. Very small cylindrical pieces (branches cut in sections) about the thickness of a quill; externally longitudinally striate and marked with alternate leaf-scars; periderm light greenish-brown or greenish-gray, thin, overlaying a uniformly green, rather thick, inner bark. Wood whitish or yellow, with greenish spots, surrounding a central pith, or, as is generally the case, a hollow; it is in one or two circles, with large ducts and numerous one-rowed medullary rays. The bark consists principally of parenchymatous tissue.
Inodorous; taste at first bitter, afterward sweet. Constituents: **Solanine**, the active alkaloid, and a glucoside termed **dulcamarin**, \( \text{C}_{22}\text{H}_{34}\text{O}_{10} \), to which the, taste of the drug is due; also resin, wax, gum, starch, and calcium lactate. Commercial Solanin is a mixture of Solanin and Solanidin. Solanidin is soluble in alcohol. Solanin is practically insoluble, excepting in boiling alcohol.

Preparation of Dulcamarin.—Digest aqueous infusion of the drug with animal charcoal; treat charcoal with alcohol. Precipitate aqueous solution of alcoholic extract with lead subacetate, wash, digest with alcohol, and decompose with \( \text{H}_2\text{S} \). Evaporate resulting solution. Purify product by resolution, filtration and evaporation.

Dulcamara is feebly narcotic and anodyne, but is chiefly employed as an **alterative and resolvent** in skin diseases, particularly those of a scaly character. Dose: 1 to 2 dr. (4 to 8 Gm.).

**Extractum Dulcamaræ Fluidum**, U.S.

P. 1890  
Dose: 1 to 2 fl. dr. (4 to 8 mils).

515. **SOLANUM Carolinensis**, N.F. Linné.—HORSE NETTLE. A 20 per cent. tincture of this herb has been recommended in epilepsy in doses of 30 to 60 drops (2 to 4 mils)

516. **CAPSICUM**.—**CAPSICUM**

**CAYENNE PEPPER. RED PEPPER**

The dried ripe fruit of *Capsicum frutescens* Blume, deprived of its calyx.

BOTANICAL CHARACTERISTICS.—A small, rough, branched shrub, 1 to 2 feet high. Leaves ovate or lanceolate, entire, hairy. Flowers small, white, solitary, axillary, drooping. Capsule deep red, very pungent.

SOURCE.—Tropical America and Asia; cultivated.
DESCRIPTION OF DRUG.—The fruits vary in shape and size, but those most generally used are oblong, wrinkled, pendulous, pod-like berries, the largest (American), about the thickness of a finger, with a long, recurved apex; pericarp bright red, sometimes yellow, thin, translucent; it incloses two or three cells and contains numerous flat, reniform, whitish seeds, which are surrounded by a dry, loose parenchyma, and fastened to a slender placenta; odor peculiar, very irritating, especially in powder or in the fresh state; taste fiery.

**Powdered capsicum** of the market consists of several species of capsicum ground up together. It is of a reddish color. This is especially true of the American capsicum, which is grown to a limited extent in
Texas and Mexico, where it is ground and called “paprika.” The African (Zanzibar) pod yields a powder of a greenish- or brownish-yellow color. The commercial variety known as Bombay yields a powder of a more yellowish color than the African, but is not at all like the reddish-orange powder resulting from the American pod. This color fades and disappears on long exposure to the light. It is often adulterated with sawdust and red lead; the former may be detected with the microscope, the latter by digesting the powder in dilute nitric acid, filtering, and adding a solution of sodium sulphate, which will throw down a white precipitate if any lead oxide is present.

STRUCTURE.—A microscopical examination for the distinction of the above varieties has been suggested. This test is based upon the size and character of the cells of the outer layer of the epidermis, the American having, in dimension, the largest and the African the smallest cell in the outer layer of the pericarp. The value of capsicum can be estimated only by assay.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Capsaicin, C₉H₁₄O₂, an exceedingly active pungent principle existing principally in the pericarp; a volatile alkaloid having an odor like coniine, supposed to be the result of a decomposition process during ripening of the fruit, as it does not exist in the unripe fruit—fixed oil, fat acids (oleic, palmitic, and stearic), and a red coloring matter (a cholesterin ester of the fat acids). Ash, not exceeding 7 per cent.; insoluble in HCl 1 per cent.

Capsicum should yield not less than 15 per cent. of non-volatile ether extract, soluble in ether, U.S.P. IX.

Preparation of Capsaicin.—Treat petroleum ether extract with alkali; pass CO₂ through the solution; collect crystals after standing. Soluble in ether, alcohol, benzene, and fixed oils.

ACTION AND USES.—Externally rubefacient. Internally a powerful stimulant. Its chief value medicinally is in the treatment of malignant sore throat and scarlet fever, used internally and as a gargle. Dose: 1 to 5 gr. (0.06 to 0.3 Gm.).

OFFICIAL PREPARATIONS.

- Tinctura Capsici (10 per cent.), Dose: 15 to 30 drops (1 to 2 mils).
- Oleoresina Capsici, 1/4 to 1 drops (0.016:2 to 0.065 mil).

Sayre’s Materia Medica part V - Page 39
517. LYCOPERSICUM ESCULENTUM Miller.—TOMATO. The ripe fruit is said to exert a curative action on ulcerated mucous membranes, given internally and applied locally. Dose of fluidextract: 30 to 60 drops (2 to 4 mils).

SCROPHULARIACEÆ.-Figwort Family

Herbs or rarely trees with didynamous stamens, and an irregular, usually 2 lipped, corolla; fruit a capsule. A large order of plants, containing a bitter glucoside.

### Synopsis of Drugs from the Scrophulariaceæ

<table>
<thead>
<tr>
<th>A. Leaves</th>
<th>C. Herbs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euphrasia, 519.</td>
<td>Scrophularia, 523.</td>
</tr>
<tr>
<td><em>Verbascum</em>, 520.</td>
<td>Chelone, 524.</td>
</tr>
<tr>
<td>B. Rhizome.</td>
<td></td>
</tr>
<tr>
<td><em>Leptandra</em>, 521.</td>
<td></td>
</tr>
</tbody>
</table>

518. DIGITALIS.—DIGITALIS

FOXGLOVE

The carefully dried leaves of *Digitalis purpurea* Linné, without admixture of more than 2 per cent. of stems, flowers, or other foreign matter.

BOTANICAL CHARACTERISTICS.—Biennial, hoary-pubescent. Leaves alternate, ovate-lanceolate, crenate, rugose. Racemes terminal, loose; flowers purple, Sometimes white, hairy, and spotted within.

SOURCE.—The plant is indigenous to Southern and Central Europe, particularly in the western section, and grows wild as far north as Norway, also in Madeira and the Azores, and is cultivated in the United States. It is found on the edges of woody land and prefers sandy soil.

It is claimed by some investigators that Digitalis leaves of the first and second year's growth have proved identical in their activity, and the cultivated leaves are at least as active as those wild grown.

DESCRIPTION OF DRUG.—The margin of this leaf is rather irregularly double crenate. In the market it comes in wrinkled, velvety fragments, the lower surface paler green than the upper, softly pubescent, especially along the midrib and veins; the midrib is prominent, but not so much so as in hyoscyamus; the venation forms prominent meshes on the under surface of the leaf, the principal veins joining the midrib at a very acute angle; odor slight and...
characteristic; taste strongly bitter.

ADULTERATIONS.—Other dried leaves are sometimes mixed with digitalis', the commonest of these are: Inula conyza (Conyza squarrosa), spikenard, and Inula helenium, both having entire, instead of crenate or serrate, margins, and the latter having its veins branching off at about right angles to the midrib, accidental impurities, such as Comfrey leaves, Symphytum officinale, have been found. These are lanceolate and bear isolated stiff hairs.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—The exact chemical composition of digitalis is a vexed question, but the latest analysis shows it to be composed of at least five principles: digitalin, $C_5H_8O_2$ (soluble in alcohol, insoluble in water), digitalein (soluble in water and alcohol), digitonin, $C_{27}H_{44}O_{13}$ (readily soluble in water, insoluble in alcohol, the diuretic principle), digitin (inert), and digitoxin, $C_{31}H_{50}O_{10}$, the most active ingredient, crystalline (insoluble in water, and sparingly soluble in alcohol, deposited as a sediment from the alcoholic preparations of the leaf). Digitoxin, by recent experimentation, is found to yield with hydrochloric acid digitoxigenin, $C_{22}H_{32}O_4$, and a glucose, digitoxose, $C_9H_{18}O_6$, the former in colorless crystals.

---

**Fig. 223.—**Digitalis purpurea—Flowering branch.
DIGITALIS PRINCIPLES.—The search for pure principles representing the complete action of the drug seems to be hopeless, but many proprietary preparations have been countenanced, in a measure, by the Council of the A.M.A. These are: Digitalein, Crude; Digitalin, True; Digitalin, “French;” Digitalin, “German;” Digitoxin; Digitoxin-Merck. These principles are all described in “New and Non-official Remedies.” Ash not to exceed 15 per cent.

TEST.—If made into a fluidextract and assayed biologically the minimum lethal dose should not be greater than 0.0006 mil of fluidextract, or the equivalent in fluidextract of 0.0000005 Gm. of ouabain, for each gramme of body weight of the frog.

Preparation of Digitalin.—A concentrated fluidextract is first treated with water acidulated with acetic acid and charcoal. The filtrate is neutralized with ammonia, then precipitated with tannin. The washed precipitate is then rubbed with lead oxide, boiled with alcohol, decolorized, and filtered. Evaporate to solid and wash with ether. In this way a digitalin of indefinite composition is obtained, consisting of such glucosides as digitin, digitonin, etc.

ACTION AND USES.—Cardiac tonic and stimulant and diuretic. It slows the heart's action and increases its force, and by stimulating the vascular nervous system causes contraction of the arterioles and therefore greatly increases arterial tension. Its efficient diuretic action in cardiac diseases is due to its peculiar effects upon the general and renal circulations. Dose: 1 to 2 gr. (0.065 to 0.03 Gm.). Dose of digitalin: $\frac{1}{10}$ gr. (0.006 Gm.), much depends on the quality. Digitalin, “French.” Homolle's Digitalin, for example: Dose: $\frac{1}{250}$ to $\frac{1}{35}$ gr. (0.00025 to 0.002 Gm.), Digitoxin $\frac{1}{120}$ gr. (0.0005 Gm.), Digitalein, crude $\frac{1}{60}$ gr. (0.001 Gm.).

OFFICIAL PREPARATIONS.

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infusum Digitalis (1.5 per cent.)</td>
<td>1 to 4 fl. dr. (4 to 15 mils).</td>
</tr>
<tr>
<td>Tinctura Digitalis (10 per cent.)</td>
<td>5 to 30 drops (0.3 to 2 Milis).</td>
</tr>
<tr>
<td>Fluidextractum Digitalis</td>
<td>1 to 2 drops (0.065 to 0.13 mil).</td>
</tr>
</tbody>
</table>

519. **EUPHRASIA OFFICINALIS** Linné.—EYEBRIGHT. The leaves of this common plant have been stated to be almost a specific in acute nasal catarrh, given in the form of infusion.

520. **VERBASCUM THAPSUS** Linné.—MULLEIN. Both the flowers and leaves of this field weed are used. (V. Flores and V. Folia, N.F.). Mullein contains a large proportion of mucilage, which makes it a good demulcent and emollient. Anodyne
properties are also ascribed to it. Popularly used in pectoral complaints, especially consumption, in which it is said to relieve the cough and also to improve the nutrition. Dose: 2 to 3 dr. (8 to 12 Gm.), in infusion. The dried leaves are sometimes smoked for nasal catarrh.

521. LEPTANDRA, N.F.—LEPTANDRA

CULVER'S ROOT. CULVER'S PHYSIC

The dried rhizome and roots of Veron'ica virg'ina Linné.

BOTANICAL CHARACTERISTICS.—Stem erect, 2 to 6 feet high. Leaves whorled in 4's or 7's, very smooth, or sometimes slightly downy, lanceolate, serrulate. Spikes panicled; corolla small, pinkish, or nearly white; stamens much exserted.

HABITAT.-United States, east of the Mississippi.

![Diagram of Leptandra root cross-section]

**Fig. 224.—Leptandra—Cross-section of rootlet. (25 diam.)**

DESCRIPTION OF DRUG.—Horizontal rhizome, 4 to 6 inches long, somewhat flattened, about the thickness of a quill, branched, generally broken into pieces an inch or more long; very hard and firm; from a light to a dark brown color; upper side marked with broad stem-scars, under side beset with the remnants of the thin, fragile, wrinkled rootlets. Fracture woody—bark thin, blackish, wood-circles one or two, yellowish, pith 6-rayed; tissue Surrounding pith irregular and angular; inodorous; taste bitter and acrid.

Powder.—Brown. Characteristic elements: Parenchyma of cortex, isodiametrical or
elongated with spherical starch grains (2 to 4 µ in diam.) and brown resin; sclerenchyma with bast fibers and narrow, thick-walled stone cells; ducts with scalariform, spiral, simple pores; tracheids, numerous; outer wall of epidermal rootlets very thick; considerable cork from rhizome.

CONSTITUENTS. Besides tannin, gum, and a small quantity of volatile oil, it contains a crystalline glucoside, the active principle, which should be termed leptandrin instead of the resin or resinoid called by that name; this resinoid is obtained by precipitating a concentrated alcoholic tincture with water; its action is probably due to a small amount of the crystalline glucoside mixed with it.

Preparation of Leptandrin. Remove coloring matter from infusion by basic acetate of lead, excess of lead removed by Na₂CO₃. Treat resulting liquid with animal charcoal. Extract washed charcoal with boiling alcohol; evaporate; dissolve in ether to purify. Upon evaporation needle-shaped crystals are obtained which are bitter; soluble in water, alcohol, and ether. The eclectic leptandrin is made by precipitating concentrated alcoholic tincture with water, and is a mixture of inert matter with pure leptandrin.

ACTION AND USES. Cholagogue cathartic. Dose: 15 to 60 gr. (1 to 4Gm.). The fluidextract, extract and vegetable cathartic pills formerly represented the drug (U.S.P. VIII).

522. VERON'ICA OFFICINA'LIS Linné.—SPEEDWELL. Indigenous. (Herb.) Alterative, diuretic, and expectorant, in infusion.

523. SCROPHULA'RIA NODO'SA Linné.—FIGWORT. This indigenous herb is peculiar from the rank, fœtid odor of the leaves, especially when fresh. It has
alterative, diuretic, and anodyne properties, and is used in hepatic diseases, scrofula, cutaneous diseases, dropsy, and as a depurative. Dose of fluidextract: 30 to 60 drops (2 to 4 mils).

524. **CHELONE**.—BALMONY. SNAKE-HEAD. The herb of *Chelo'ne gla'bra* Linné. Habitat: United States. Tonic, anthelmintic, and laxative, with a supposed peculiar action on the liver. It has been largely employed in domestic practice as an external application in diseases of the skin. Dose: 30 to 60 gr. (2 to 4 Gm.).

### OROBANChACEÆ.—Broom -rape Family

525. **EPIPHEGUS**.—BEECH-DROP. CANCER-ROOT. The herb of *Epiphe'gus virginia'na* Barton, growing in all parts of North America as a parasite on the roots of the beech tree. It is a fleshy plant with a scaly, tuberous root, and smooth, yellowish or purplish stem, about 400 mm. (16 in.) tall, covered with small scales instead of leaves; taste bitter, astringent, and nauseous. It receives its name, cancer-root, from the popular belief that the powder was beneficial in the treatment of cancerous ulcers. It is often given as an astringent. Dose: 30 to 60 gr. (2 to 4 Gm.).

### BIGNONIACEÆ.-Bignonia Family

526. **NEWBOULDIA**.—The root-bark of *Newboul'dia læ'vis* Seeman, introduced from tropical Africa as an astringent in diarrhea and dysentery. Dose of fl'ext.: 15 to 60 drops (1 to 4 mils).

527. **CAROBA**.—The leaves of *jacaran'da proce'ra* Sprengel. Habitat: South America. A valuable alterative and antisyphilitic. Dose of fl'ext.: 1.5 to 60 drops (1 to 4 mils)

### PEDALINEÆ

528. **SESAMUM**.—BENNÉ. From *Se'samum in'dicum* Linné, a plant growing to the height of 4 or 5 feet, native to the East Indies, but long cultivated in Asia and Africa; from the latter country it was introduced by the negroes into Southern United States. Both the leaves and the seeds are used, and a fixed oil expressed from the latter.

528a. **THE LEAVES** are oblong -lanceolate, from 75 to 125 mm. (3 to 5 in.) long, heart-shaped at base; pubescent, prominently veined beneath. They abound in a gummy matter to such an extent that two leaves stirred in a cup of water will make a sufficiently thick mucilage for use as a demulcent.

528b. **THE SEEDS** are used chiefly as a source of the fixed oil, of which they contain from 50 to 60 per cent. They are used by the southern negroes as food. Ovate, flattened, about 3 to 4 mm. (1/8 to 1/6 in.) long; externally yellowishwhite to pale brown (in one species, *S. orientale*, purplish-brown), with four longitudinal ridges, and, on the
pointed end, a somewhat prominent hilum; internally whitish, oily; taste bland.

528c. Oleum Sesami.—TEEL OIL. BENNÉ OIL. A yellowish, limpid, transparent fixed oil, thinner at ordinary temperatures than most of the fixed oils; odor slight; taste bland, nut-like. It has a specific gravity of 0.919 to 0.923, and congeals to a yellowish-white mass at -5°C. (-23°F.). It is often used to adulterate olive and almond oils, in which it may be detected by shaking a portion of the suspected oil with an equal weight of concentrated hydrochloric acid; a bright emerald-green color will usually be produced, changing to blue, then violet, and finally to deep crimson on the addition of about one-tenth its weight of cane-sugar and agitating.

CONSTITUENTS.-Contains olein (76 per cent.), myristin, palmitin, stearin-resinoid compound, higher alcohol, C_{25}H_{44}O, sesamin, C_{11}H_{12}O_{3}, crystalline.

PLANTAGINEÆ

529. PLANTAGO.—PLANTAIN. The herb of Plantago major and other species. Used principally in domestic practice, the leaves being externally applied as a stimulant application to sores, frequently in the form of a poultice, not infrequently applied whole.

RUBIACEÆ.—Madder Family

Herbs, shrubs, or trees, with opposite, simple, and entire leaves, connected with interposed stipules, or in whorls without stipules. A very large family in tropical regions, represented by the coffee plant (Arabia and Africa) and by the cinchonas (South America).

**Synopsis of Drugs from the Rubiaceæ**

A. Root.
   Ipecacuanha, 530.
   Rhizome.
   Rubia, 531.
B. Bark.
   CINCHONA, 532.
   CINCHONA RUBRA, 532 a.
   Remijia, 533.
   Cephalanthus, 534.
D. Herb.
   Mitchella, 535.
   Galium, 536.
E. Seed.
   *Coffea, 537.
F. Extractive.
   Catechu Pallidum (Gambir), 538.
Fig. 226.—*Cephalis ipecacuanha*—Plant and dried root.
The dried root, of *Cephaelis Ipecacuan'ha* (Brotero) A. Richard (Fam. Rubiaceae), known commercially as Rio Ipecac, *C. acuminata* Karsten, known commercially as . The value is dependent upon the percentage of alkaloidal constituents, should yield not less than 1.75 per cent. of ether soluble alkaloids of Ipecac, U.S.P.

Two important alkaloids (emetine and cephaëline) are present in ipecac; the proportion in which these exist seems to vary, and this variation seems to depend upon the accidents of growth and the surroundings of the individual plant.—See Constituents.

**BOTANICAL CHARACTERISTICS.**—The root perennial, knotty, with transverse rings; stems suffruticose, ascending, somewhat pubescent toward the apex. Leaves opposite, oblong, roughish above, finely pubescent beneath. Inflorescence capitate, inclosed by a large one-leaved involucre; flowers bracteate; corolla white, funnel-form, the limb with reflexed segments; stamens 5, slightly exserted. Fruit a dark violet berry, crowned by the limb of the calyx, 2-celled, 2-seeded.

**SOURCE AND VARIETIES.**—Grows in the damp woods of the Brazilian valleys, notably in the provinces of Para, Rio Janeiro, Pernambuco, etc. This variety is known in commerce as Rio ipecac, while that from Colombia is called Carthagena ipecac. The former is usually preferred, but the latter is now more common. The plant Psychotrin medica is sometimes termed and sold as Carthagena, ipecac, but it is devoid of alkaloid. The Brazilian plant is quite hardy, appearing as a creeping vine or bush. The roots usually grow thicker as they penetrate the ground and then taper off again to a point or thin rootlet. Collectors usually leave a part of every other plant in the ground, so that in about three years another crop may be harvested. “Wiry root,” consisting of about 75 per cent. of woody portion and 25 per cent. cortex, is, according to Dohme, richest in alkaloids. It has a rather rough, uneven appearance, and is popularly less esteemed than the so-called “fancy” root consisting of 75 per cent. cortex. This prejudice, according to Dohme, is difficult to overcome.

**DESCRIPTION OF DRUG.**—*Rio Ipecac.*—In pieces of irregular length, rarely exceeding 25 cm.; stem portion 2 to 3 mm. thick, light graybrown, cylindrical and smoothish; root portion usually red-brown, occasionally blackish-brown, rarely gray-brown, 3 to 6 mm. thick, curved and sharply tortuous, nearly free from rootlets, occasionally branched, closely annulated with thickened, incomplete rings, and usually exhibiting transverse fissures with vertical sides, through the bark; fracture short, the very thick, easily separable bark whitish, usually resinous, the thin, tough wood yellowish-white, without vessels; odor very slight, peculiar, the dust sternutatory; taste bitter and
nauseous, somewhat acrid. It is stated by Rusby that the Rio variety has almost ceased to arrive in the market, the Carthagena variety being supplied. This is now mostly what is known as Panama Ipecac.

**Carthagena ipecac** is of a dull gray color, thicker, less frequently and sharply crooked, and lacks the constrictions characteristic of Rio ipecac, although it bears the annular thickenings, or merging annulæ. The thick bark, on cross-section, has rather a grayish color, the medullary rays are more prominent and more numerous.

**STRUCTURE.**—The thin outer layer of cork cells contains a brownish-red deposit, thought by some to be emetine in combination with ipecacuanhic acid. The thick inner cortical layer consists of starchy parenchyma, free from medullary rays, but containing a circle of stone cells filled with calcium oxalate crystals. Transverse sections show rather a small layer of cork cells, a thick cortical portion consisting of parenchyma, loaded with starch and rich in alkaloid. The woody portion, radiate, contains little or no alkaloid.

![Cross-section of root](image)

**CONSTITUENTS.**—**Emetine** (1 to 2 per cent.), cephaëline, psychotrine, and a peculiar tannic acid called ipecacuanhic or cephaëlïc acid, starch,
resin, etc. The active principles exist only in the bark of the root, and probably in the thin, outer layer of cork cells. Recently considerable light has been thrown on emetine, $C_{15}H_{22}N_{2}O_{5}$, and cephaëline, $C_{14}H_{20}NO_{2}$, which were formerly supposed to be one body. According to Paul and Cownley ("Pharm. Jour.,” 1896) cephaëline is the emetic principle and emetine the expectorant principle of the drug. This naming is unfortunate, and should be reversed. Emetine is amorphous; cephaëline crystalline. Ash, not less than 1.8 per cent. nor more than 4.5 per cent.

**KRYPTONINE.**—This is the name of a new alkaloid of ipecac, discovered by J. U. Lloyd. The principle itself, as well as its acid compounds, are colloidal in character. It belongs apparently to a new group of principles awaiting further investigation. Filter paper shows a marked adsorptive property to this alkaloid. It is black in mass but of varying color in different solvents. See Proc. Amer. Ph. Asso., 1916. Condensed description Amer. Druggist, Oct., 1916, P. 28.

Preparation of Emetine.—A very simple process is to exhaust the drug with boiling chloroform made slightly alkaline with solution of ammonia. Upon distilling off the chloroform the emetine is left in a very pure condition, and, when dried at 100ºC., gives a residue which, when weighed, gives one a rough estimate of the value of the drug. Cephaëline is extracted usually with emetine in most of the processes for assay. It is less soluble in ether than emetine.

Preparation of Ipecacuanhic Acid (Cephaëlic Acid).—Precipitate decoction with lead acetate, dissolve precipitate with acetic acid, and precipitate solution with lead subacetate; wash and dry. Resembles caffeotannic acid.

**ACTION AND USES.**—When locally applied, acts as counter-irritant. Small doses are diaphoretic and expectorant. In large doses a **systemic emetic**, in minute doses stomachic, aiding digestion. Ipecac has been used, since its introduction into medicine, as a remedy in dysentery, when there is said to be a peculiar tolerance of the drug, but the fact is the stomach almost invariably rejects large doses. Recent experiments prove that ipecac, when deprived of its emetine, possesses its full antidyseritic properties, without the drawbacks of depression, nausea, etc. Accordingly there appears in the market to meet this peculiar demand a preparation made from de-emetinized bark. Emetine has recently been highly praised in the treatment of pyorrhea, Riggs' disease. Hypodermic tablets of the hydrochloride, containing from 0.016 to 0.032 Gm. are prepared. Used in the form of injections in diseases due to pathogenic amebas. Also administered internally, “Alcresta Ipecac” when thus administered is decomposed in the alkaline fluid of the
intestines with liberation of alkaloids and produce amebicidal action. Tablets of same, representing 10 gr. of ipecac are dispensed. Dose 2 or 3 tablets three times a day at first period of few days, then discontinued for a day or two, if laxative effect is produced. Dose of ipecac as expectorant, 1 gr. (0.06 Gm.); emetic, 10 to 15 gr. (0.6 to 1 Gm.).

OFFICIAL PREPARATIONS.

**Fluidextractum Ipecacuanhae** Dose: 3 to 8 drops (0.2 to 0.5 mil); 15 to 60 drops (1 to 4 mil).

**Syrupus Ipecacuanhae** (7 per cent.),
- Adult exp. 30 drops (2 mils),
- Emetic 6 fl. dr. (24 mils).

**Pulvis Ipecacuanhæ et Opii** (10 per cent. of each) 5 to 15 gr. (0.3 to 1 Gm.).

531.—RUBIA.—MADDER, The rhizome of *Rubia tinc'torum* Linné. Habitat: Levant and Southern Europe, chiefly supplied from Holland, where it is cultivated. Usually comes into market in a coarse, red powder. Its most important constituent is **alizarin**, a red coloring-matter soluble in water and alcohol. Chiefly used as a dye.

532. CINCHONA.—CINCHONA

PERUVIAN BARK

The dried bark of *Cincho'na Ledgeriana* Moens, *Cincho'na calisa'ya* Weddell, *Cinchonaofficinalis* Linné, and of hybrids of these with other species of Cinchona, yielding, when assayed, not less than 6 per cent. of cinchona alkaloids.

SOURCE VARIETIES, HISTORY, ETC.—The genus Cinchona is composed of over three dozen species, but few furnish the commercial barks. It is well known that the original source of the drug is South America (10° N. lat. to 19° S. lat., from about 3000 to 12,000 feet above sealevel), the area of the growth of the various species being confined exclusively to the Andes, chiefly on the eastern face of the Cordilleras—occasionally on the western face, which is covered by forests. The best known varieties from South America were the dark brown Loxa bark and the pale yellow-gray Huanuco. The cinchonas seldom form an entire forest, but rather groups interspersed among treeferns, gigantic climbers, bamboos, etc., sometimes growing separately in exposed situations, but under peculiar climatic conditions, such as a great humidity of atmosphere and a mean temperature of about 62°. Shade seems to favor the development of alkaloids. Dymock calls attention to the fact that “the north or shaded side of a tree has a richer bark than that on the south side,” a fact which explains the
success of the "mossing system."  

1 There are four methods of collecting or harvesting the bark: (1) By taking it in longitudinal strips from the standing tree and leaving the bark to renew over the exposed wood; (2) by scraping and shaving off the bark; (3) by coppicing; and (4) by uprooting. The first is most in use... The trees are barked preferably in the rainy season, when the bark "lifts" or is more easily removed from the wood. The coolie inserts the point of a knife in the tree as far as he can reach and draws it down, making an incision in the bark straight to the ground; he then makes another cut parallel to the first, about an inch and a half distant and, loosening the bark with the back of the knife, the strip or ribbon is taken off. If the operation is performed carefully and the cambium cells are not broken, a new layer of bark will be formed in place of that which is taken away. The tree is then covered with moss, grass, or leaves, bound on by strings of fiber. All this is done to foster the growth of the new bark (renewed bark) from the cambium and to thicken the untouched layers of natural bark, which is now termed mossed bark.—Pharmacographia Indica. 

Sayre's Materia Medica part V - Page 52
Cultivated trees in recent years have been the chief source of the commercial barks. To some extent the cultivation has been carried on in South America, but great success has attended the persevering efforts of the Dutch Government and the Government of British India. Extensive plantations of cinchona are now flourishing, to the extent of several million trees of the more important species, on the Neilgherry Hills and in the valleys of the Himalaya in British Sikkin. The tree is also cultivated in Ceylon, Java, Jamaica (Blue Mountains), and other countries.
VARIETIES.—There are about twenty varieties of cinchona barks, and it is a very difficult matter to distinguish them, since they have been and are now changed so much by grafting and crossing. The varieties generally used and best known are: C. succirubra Pavon, C. calisaya Weddell, C. ledgeriana Moens, C. lancifolia Mutis, and C. officinalis Hooker.

The success of the Dutch planters of Java has been so pronounced that the greater portion of cinchona bark comes from this place, leading varieties being ledgeriana and succirubra bark. In Java great care is exercised in the cultivation. The trees are allowed to reach the age of 10 years.

Fig. 229.—Cinchona calisaya—Cross-section of bark. A, Cork cells. B, Cortical parenchyma. C, Stone cells. D, Phloëm portion. E, Soft bast. F, Phellogen forming bark. G, Medullary rays. (The black line from G should be extended to the parenchyma cells between the phloëm portions.) H, Bast fibers.

Fig. 230.—Cross-section of Cinchona calisaya bark (var. Micrantha).
twelve years before the bark is collected. The cultivation is largely confined to the variety Ledgeriana. Over 500,000 pounds are collected annually from Java plantations.

DESCRIPTION.—In quills or curved pieces of variable size, usually 2 or 3, sometimes 5 mm. thick; externally gray, rarely brownish-gray, with numerous intersecting transverse and longitudinal fissures, having nearly vertical sides; the outer bark may be wanting, the color externally being then cinnamon brown; the inner surface light cinnamon brown, finely striate; fracture of the outer bark short and granular, of the inner finely splintery; powder light brown or yellowish-brown; odor slight, aromatic; taste bitter and somewhat astringent.

MICROSCOPICAL.—The calisaya (variety Micrantha) transversely shows milk-vessels in the cortical parenchyma and absence of stone cells, which are present in Lancifolia. The rays of the woody portion are more elongated and the medullary rays larger in size. Bast fibers comparatively small and less numerous, but are spindle-shaped, as they are in all true cinchona barks showing longitudinal section. In C. rubra the stone cells and milk-ducts are both wanting, while the bast fibers are more numerous and stouter. The bark is richer in coloring matter. In cuprea bark the cork cells are thicker and the cortical parenchyma cells smaller, stone cells present, milk-ducts absent, few bast fibers, but the woody portion contains indurated cells, which simulate them. The ligneous cells are very numerous and extend even down into the medulla. They are smaller than the bast fibers of true cinchona barks, but much more numerous.

These barks are thoroughly saturated with pigments, principally cinchona red, the phlobaphen of all cinchona barks. Before microscopical examination these pigments must be removed by a weak alcoholic solution of ammonia. This requires considerable practice (Dohme). Compared with other barks, the fibers of the liber of cinchona are shorter and more loosely arranged, being for the most part separated into simple fibers imbedded in the bast parenchyma, or united into very short bundles.

Grahe's test for the distinction of cinchona bark is as follows: On heating about 0.1 Gm. (1½ gr.) of the powdered bark in a dry testtube a tarry distillate of a red color is obtained.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.
OFFICIAL PREPARATIONS.

Fl. Ext. Cinchonae
Dose: 15 drops (1 mil).

Tr. Cinchonae
1 fl. dr. (4 mils).

532a. CINCHONA RUBRA.—The dried bark of Cinchona Succirubra Pavon or its hybrids, yielding not less than 6 per cent. of the total

Sayre's Materia Medica part V - Page 56
alkaloids of Cinchona. "In quills or incurved pieces, varying in length, and from 2 to 4 or 5 mm (1/12 to 1/6 or 1/5 in.) thick; the outer surface covered with a grayish-brown cork, more or less rough from warts and longitudinal, warty ridges, and from few, mostly short and not frequently intersected transverse fissures, having their sides sloping; inner surface more or less deep reddish-brown and distinctly striate; fracture short, fibrous in the inner layer; outer layer, granular. For years practically all of the red cinchona bark, so called, was only a hybrid, but recently, and especially for a year past, fine quill bark of pure succirubra has frequently been received.

Powder.—Microscopical elements of: See Part iv, Chap. I, B.

CONSTITUENTS.—Upon quinine, C_{20}H_{24}N_2O_{23}H_2O, the bark almost exclusively depends for its value. This alkaloid is colorless, amorphous, or in acicular crystals; inodorous, very bitter; soluble in 1670 parts water, 6 parts alcohol, 26 parts ether. Aqueous solutions of the salts have a blue fluorescence, and when treated with chlorine water and ammonia a beautiful green color is produced—"Thalleoquin test." The solutions deviate the plane of polarization to the left. The tartrate is soluble in water. A cold aqueous solution of the sulphate remains unaffected by potassium iodide T. S. (difference from quinidine). The other prominent principles are:

CINCHONIDINE, C_{19}H_{22}N_2O—isomeric with cinchonine, non-fluorescent; forms colorless, anhydrous crystals, soluble in 20 parts alcohol (80 per cent.), 1680 of water, and 188 of ether. The sulphate is more soluble in water than quinine, and the tartrate very insoluble. The Thalleoquin test (see above) gives a white precipitate. Represented in
Cinchonidinæ Sulphas.

CINCHONINE, $C_{20}H_{24}N_2O$—white lustrous prisms, soluble in 3760 parts water, 116 parts alcohol, and 526 parts ether; has exactly the opposite action to cinchonidine and quinine upon polarized light.

QUINIDINE, $C_{20}H_{24}N_2O_2$—isomeric with quinine; crystallizes in prisms soluble in 2000 parts water, 0.8 part alcohol, about 30 parts ether; turns the plane of polarization to the right. A cold aqueous solution of the sulphate yields a white precipitate with potassium iodide T. S. (difference from sulphate of quinine). Represented in Quinidinæ Sulphas.

Among the unofficial alkaloids and principles found in the bark are the following: Isomeric with quinine and quinidine is quinicicine; with cinchonine and cinchonidine, are cinchonicine, homocinchonine, homocinchonidine, homocinchonicine, and apoquinamine; a brown amorphous alkaloid is obtainable from the mother-liquor known as chinoidine (quinoidine), a mixture of various not well-defined alkaloidal substances; kinic acid, $C_7H_{12}O_6$, and kinovic acid, kinovin; bitter cinchonic acid (derived from preceding)- volatile oil, a minute quantity.

Separation of Total Alkaloids.—Moisten powdered cinchona with ammonia water and allow it to stand for an hour, then hot water is added. To the mixture, after cooling, milk of lime is added and the whole evaporated to dryness. This is placed in an extraction apparatus and exhausted with ether. Water acidulated with HCl is added to neutralize the alkaloids and the ether distilled off. The cooled liquid is filtered and decinormal solution of soda is added. Finally, sodium hydrate is added to complete the precipitation of the alkaloids. There are numerous other processes, but this seems a simple and satisfactory one to use for assay purposes.

YIELD OF ALKALOID.—The richest government bark brought to the market until recently has not exceeded $9\frac{1}{2}$ per cent. of sulphate of quinine; 7 to 8 per cent. is a good average in government plantations. Barks taken from the trees in the government gardens at Pioeng Goenoeg, Java, have recently been analyzed and found to equal respectively 12.66 and 16.04 per cent. of quinine sulphate.

ACTION AND USES.—The action of cinchona bark is due almost entirely to the alkaloids therein contained. Quinine is a powerful
antiseptic, destructive, in weak solution, to infusorial and vegetable life. Internally it stimulates the muscular fibers of the stomach, acting as a bitter tonic, invigorating the vital functions and aiding digestion. In large doses the brain is affected, giving rise to symptoms such as fullness, frontal headache, deafness, ringing in the ears, and mental dullness. This effect is called "cinchonism" attributed to partial anæmia of the brain, contraction of blood-vessels, etc. Heart action is depressed. Reflex excitability of the spinal cord is lowered. In the blood, quinine arrests the migration of the white corpuscle and checks its amœboid movement; the oxygen-carrying function of the red corpuscle is impaired; infectious micro-organisms in the blood and tissues are probably rendered inactive or destroyed. The toxic symptoms produced by quinine and allied salts are spoken of collectively as cinchonism, which ordinarily is not allowed to go further than tinnitus aurium.

Dose of cinchona: 15 to 60 gr. (1 to 4 Gm.), in powder, fluidextract, or its equivalent in the salts of the alkaloids.

OFFICIAL PREPARATION.

**Tinctura Cinchonae Composita** (10 per cent., with bitter orange-peel 8 per cent., and serpentaria 2 per cent.) 1 to 4 fl. dr. (4 to 1.5 mils).

533. **REMIJA.**—**CUPREA BARK.** The bark of *Remijia pedunculata* Triana and of *Remijia purdieana* Weddell, resembling cinchona in physical properties and constitution. A copper-red bark from the United States of Colombia, grown at an altitude of from 3000 to 6000 feet, usually in flat or curved pieces; odor slight; taste bitter. Quinine is contained in this bark to the amount of 0.5 to 2.5 per cent., but no cinchonidine is found; homoquinine—a compound of quinine and cupreine—is also a constituent. Remijia bark is largely imported by
manufacturers; it was said that the importations of this bark at one time exceeded in amount the entire importations of all the cinchona barks, by reason of its cheapness for the manufacture of quinine. Cinchonamine, $C_{19}H_{24}N_2O$, is one of the principal products of $R. purdieana$, the bark from which does not respond to Grahe's test.

534. **CEPHALANTHUS OCCIDENTALIS** Linné.—BUTTON BUSH. POND DOGWOOD. Habitat: United States. (Bark.) Tonic, febrifuge, laxative, and diuretic. It has an indirect action on the lungs, and is much used in consumption, coughs and colds generally. Dose: 30 to 60 gr. (2 to 4 Gm.).

535. **MITCHELLA**.—SQUAW VINE. PARTRIDGE BERRY. The herb of **Mitchell'a re'pens** Linné, a creeping evergreen growing in the woods of this country east of the Mississippi. Stem branching, bearing roundish-ovate, entire, evergreen leaves, about 12 mm. (1/2 in.) long, sometimes marked with white lines; flowers pale purplish, the ovary ripening into a small, scarlet-red berry. Tonic, astringent and diuretic, resembling pipsissewa in action and often substituted for it. It is frequently combined with black haw. Dose: 30 to 60 gr. (2 to 4 Gm.).

536. **GALIUM**.—CLEAVERS. LADY'S BEDSTRAWS. The herb of **Ga'lium apari'ne** Linné. Habitat: Northern Hemisphere. Stem weak, quadrangular, prominently winged, and covered with retrorse prickles; leaves linear-lanceolate, borne in whorls. Flowers small, white, axillary, the single ovary ripening into a two-seeded, bristly fruit. Aperient, diuretic, and alterative; also used in psoriasis and other skin diseases. Dose: 30 to 60 gr. (2 to 4 Gm.), in infusion.

G. ve'rum (Yellow Lady's Bedstraw) has a smooth stem, bearing yellow flowers. G. triflo'rum contains coumarin, and has a fragrant odor when dry.

537. **COFFEA**.—COFFEE. The seeds of **Cof'fea arab'ica** Linné. Habitat: Southern Arabia and Abyssinia; cultivated in South America, Java, and various tropical countries. The fruit is a roundish berry, about the size of a large cherry, becoming dark purple, and containing two seeds, which are inclosed within a membranous covering, and a purplish pulp. These seeds, when freed from the pericarp, form the coffee of the market. They are brownish-green or bluish-gray, planoconvex, the flat surface being elliptical, with a longitudinal groove curving deeply into the horny albumen; odor peculiar, faint, growing stronger by age; taste sweetish, somewhat astringent. Good berries are hard and sink readily in water. Soft, light, dark-colored berries should be rejected.

CONSTITUENTS.—Its properties depend upon the alkaloid caffeine (2 to 8 per cent.), the constituent common to most of the stimulating beverages. It also contains sugar, tannic acid, caproic acid, fat, etc. When roasted, the sugar is converted into caramel, the caffeic acid partially into methylamine, and several volatile and empyreumatic substances (caffeone) are formed. Pyridine has been separated from these mixed products due to roasting, giving to coffee its peculiar aroma. It loses from 15 to 18 per cent. of moisture in drying.

Preparation of Caffeine (Theine).—Precipitate infusion of tea or coffee with lead
acetate; remove lead from filtrate with H<sub>2</sub>S; concentrate second filtrate, neutralize with NH<sub>4</sub>OH, and allow it to cool, when caffeine will crystallize out. An aqueous solution of caffeine does not form a precipitate with Mayer's reagent.

ACTION AND USES.—Cerebrospinal stimulant, tonic; aids digestion and allays hunger and fatigue by lessening tissue waste.

537a. **COFFEA TOSTA**, N.F.—Yielding not less than 1 per cent. of caffeine.

538. **CATECHU PALLIDUM**.—**TERRA JAPONICA. GAMBIR**. An extract obtained from a climbing plant of the East Indies, Ourouparia Gambir (Hunter) Baillon, by boiling the leaves, twigs, etc., in water. It is in about one-inch cubes, or in irregular pieces, reddish-brown or yellowish, breaking with a dull, earthy, pale yellowish fracture, showing under the microscope numerous crystals; inodorous; taste astringent and bitter, leaving finally a sweet taste in the mouth. It is mostly used in this country in tanning, dyeing, etc.; in its native country it is chewed with betel-nuts.

**CAPRIFOLIACEÆ.**—Honeysuckle Family

Shrubs, as viburnum, or twining plants, as the honeysuckle, with opposite, exstipulate leaves, a gamopetalous corolla, and the fruit a berry, pod, or drupe. The calyx-tube is adherent to the 2- to 5-celled ovary.

**Synopsis of Drugs from the Caprifoliaceæ**

A. **Flowers.**
   * Sambucus, 539.
B. **Bark.**
   * Viburnum Opulus, 540.
   **VIBURNUM PRUNIFOLIUM, 541.**

539. **SAMBUCUS**, N.F.—ELDER. The dry flowers of *Sambu'cus canaden'sis* Linné. Collected when in full bloom and rapidly dried, the commercial drug being composed of the small, yellowish, somewhat wheel-shaped and shriveled flowers, mixed with a few expanded ones; usually detached from their peduncles, which are mixed with them. They have a sweetish, somewhat bitter taste, and a slight, peculiar, agreeable odor, due to a very small quantity of volatile oil. The European elder (*S. nigra*) resembles *S. canadensis*. Constituents: Besides volatile oil, they contain sugar, mucilage, fat, wax, resin, pectin, albuminoids, and probably a little tannin. Stimulant, carminative, and diaphoretic. Dose: 30 to 60 gr. (2 to 4 Gm.).

540. **VIBURNUM OPULUS, N.F.—CRAMP BARK**

**HIGH BUSH CRANBERRY**

The dried bark of *Vibur*num op'ulus* Linné
HABITAT.—North America.

DESCRIPTION OF DRUG.—Very thin pieces or occasionally quills, outer surface, light gray, with purplish-brown stripes and very small brown lenticels; thicker pieces purplish-red, or occasionally blackish; odor strong and characteristic; taste bitter; the inner surface is yellowish or brownish; fracture short. The bark of the mountain maple (Acer Spicatum) was an adulterant formerly described by misled authorities, as Viburnum opulus.
Powder.—Light brown. Characteristic elements: Parenchyma of inner cortex, with rosettes of calcium oxalate; middle bark bearing reddish-brown coloring matter, starch (5 to 12 µ in diam.); tracheal fragments with lignified wood fibers; few stone

**Fig. 235 a.—** *Viburnum Opulus* (X 137). Group of stone cells taken from F in Fig. 235.
cells; crystals of calcium oxalate, few aggregate (15 to 30 µ in diam.); polygonal cork cells, thin-walled.

ACTION AND USES.—Claimed to be antispasmodic, hence the name cramp bark. Dose: 30 gr. to 2 dr. (2 to 8 Gm.).

541. VIBURNUM PRUNIFOLIUM
BLACK HAW

The dried bark of the root of *Viburnum prunifolium* Linné or of *V. lentago* Linné, without admixture of more than 5 per cent. of wood or other foreign matter.

BOTANICAL CHARACTERISTICS.—A tall shrub or small tree. Leaves oval, obtuse, or slightly pointed, finely serrate. Cymes compound, sessile. Fruit an oval, black, sweet drupe.
HABITAT.—Middle and Southern United States, east of the Mississippi.

DESCRIPTION OF DRUG.—In irregular, transversely curved or quilled pieces from 1.5 to 6 cm. in length, and from 0.5 to 1.5 mm. in thickness; outer surface, grayish-brown, or, where the outer cork has scaled off, brownish-red, longitudinally wrinkled; inner surface reddish-brown, longitudinally striated; fracture short but uneven, showing in bark which is young or of medium thickness, a dark brown cork, a brownish-red outer cortex, and a whitish inner cortex in which are numerous light yellow groups of sclerenchyma tous tissues; odor slight; taste distinctly bitter and somewhat astringent. U.S.P. IX.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—A brown resin, a bitter principle (viburnin), valerianic acid, tannic acid, oxalic, malic, and citric acids, sulphates, and chlorides.

ACTION AND USES.—Diuretic, and a tonic and sedative to the uterine and ovarian nerve centers; used in threatened abortion. Dose: 30 to 60 gr. (2 to 4 Gm.).
OFFICIAL PREPARATIONS.

Extractum Viburni Prunifolii Dose: 0.5 Gm. (8 gr.).
Fluidextractum Viburni Prunifolii 30 to 60 drops (2 to 4 mils)

542. TRIOSTEUM.—FEVER ROOT. BASTARD IPECAC. The root of Triosteum. perfoliatum Linné, common in most parts of the United States. (See Conspectus.) Cathartic and emetic in large doses. Dose: 15 to 30 gr. (1 to 2 Gm.).

VALERIANÆ

Herbs with opposite, exstipulate leaves. Flowers in paniced or head-like cymes. Many of the species possess antispasmodic properties, due to the presence of a volatile oil, from which is developed valerianic acid.

543. VALERIANA.—VALERIAN

VALERIAN

The rhizome and roots of Valeriana officinalis Linné.

BOTANICAL CHARACTERISTICS.—Root perennial, tuberous. Leaves pinnate or pinnately cut. Corolla roseate, funnel-form, 5-lobed; stamens 3. Fruit a feathery akene.

SOURCE.—Europe, especially in Holland, Belgium, England, and Germany as well as Japan. The Japanese root is said to be richer in volatile oil than the Belgian. The fresh rhizomes and roots are preferred for distilling the oil, as there is a loss of nearly 50 per cent. of the oil in drying the rhizome and root for medicinal use.

DESCRIPTION OF DRUG.—Obconical, from 6 to 75 mm. (1/4 to 3 in.) in length, with stem-remnants above, and beset with numerous rootlets; those rhizomes grown in dry localities are smaller, nearly globular, with lighter colored, thinner, and less shriveled rootlets, and contain a greater proportion of volatile oil than those grown in moist ground; the latter are generally sliced longitudinally. Externally brown, internally pale brownish; odor strong, disagreeable, increasing with age, taste camphoraceous and bitter. A cross-section shows a rather thin bark, and a wood-circle, narrow, white, inclosing a large pith. Nucleus sheath mostly indistinct; branches have a similar structure but a thicker bark. The rootlets have a thick bark and a slender, woody column, distinctly radiate, and contain a small pith inclosed in a nucleus sheath.

CONSTITUENTS.—Besides the common vegetable principles, it contains a terpene, isovaleric acid, C$_5$H$_{10}$O$_2$ (distilling at 300ºC.), and a volatile oil of complex constitution, consisting mainly of an alcohol, borneol; its ether, and its formic, acetic, and valerianic acid esters, which
are gradually decomposed on exposure, liberating the acids. This oil (Oleum Valerianæ, U.S.P. VI) is of a pale greenish color, becoming yellow and viscid on exposure, and has the peculiar odor of the root. Ash, not exceeding 20 per cent.

![Diagram of Valerian](image1)

**Fig. 239.**—Valerian—Cross-section of rhizome. 
A, Cork cells. 
B, Collenchyma. 
C, Cortical parenchyma. 
D, Endodermis. 
E, Small irregular liver-cells. 
F, Medullary rays. 
G, Punctuated vessels of wood-rays. 
H, Pith-cells.

![Diagram of Valerian](image2)

**Fig. 240.**—Valerian—Cross-section of rootlet. (17 diam.) 
A, Epidermis. 
B, Parenchyma of cortex. 
C, Phloëm. 
D, Xylem. (Photomicrograph.)

*Sayre's Materia Medica part V - Page 68*
ACTION AND USES.—Gentle nerve stimulant and antispasmodic, employed in hysterical disorders. Dose: 15 to 60 gr. (1 to 4 Gm.).

OFFICIAL PREPARATIONS.

**Tinctura Valerianæ** (20 per cent.) Dose: 1 to 2 fl. dr. (4 to 8 mils).

**Tinctura Valerianæ Ammoniata** (20 per cent.) 30 to 60 drops (2 to 4 mils).

**CUCURBITACEÆ.—Gourd Family**

Succulent herbs, creeping or climbing by tendrils. Leaves alternate. Flowers monoecious and polygamous; stamens with long and wavy or twisted anthers. Fruit a pepo.

**Synopsis of Drugs from the Cucurbitaceae**

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>* Bryonia, 545.</td>
<td><strong>PEPO</strong>, 548.</td>
</tr>
<tr>
<td><strong>B. Fruits.</strong></td>
<td>Citrullus, 549.</td>
</tr>
<tr>
<td>Luffa, 546.</td>
<td>D. <strong>Resin.</strong></td>
</tr>
<tr>
<td>Momordica, 547.</td>
<td>Elaterium, 551.</td>
</tr>
</tbody>
</table>

**544. COLOCYNTHIDIS PULPA.—COLOCYNTH BITTER APPLE.** Ger. KOLOQUINTEN

The dried pulp of the fruit, *Citrullus colocynthis* Schrader, containing not more than 5 per cent. of seeds nor more than 2 per cent. of epicarp. U.S.P. IX.

BOTANICAL CHARACTERISTICS.—Stem procumbent, angular, hispid; leaves cordate-ovate, lobate; tendrils short. Flowers axillary, female flowers solitary, petals yellow with greenish veins. Fruit globose, smooth, 6-celled, with very bitter pulp; seeds whitish, sometimes brownish.

HABITAT.—Asia, Europe, and Africa.

DESCRIPTION OF DRUG.—The fresh fruit has a marbled green surface, not very unlike the watermelon. It has a thick rind inclosing a white, spongy pulp, imbedded in which are numerous light-colored seeds. The fruit on drying loses about 50 per cent. of water, leaving a very light, spongy, white or yellowish-white pulp, which, deprived of the seed, constitutes the official drug. Colocynth “apples,” as they appear in the market, contain the seeds, but are deprived of the rind; 50 to 100 mm. (2 to 4 in.) in diameter. A cross-section of the spherical pulp (“apples”) makes apparent three distinct wedges, each of
which has two branches; this structure is due to the parietal placentæ, which project to the center of the fruit, then divide and turn back, making convoluting branches directed one toward the other. In odorous; so intensely bitter that the bitterness is imparted to any object brought in contact with it.

**Fig. 241.**—Colocynth—Portion of vine and whole fruit.

**Fig. 242.**—Transverse section of colocynth fruit. **Fig. 243.**—Longitudinal section of colocynth fruit.
CONSTITUENTS.—Resin, gum, and amyloid principles. **Colocynthin**, \( C_{56}H_{84}O_{23} \), a yellowish, somewhat translucent, bitter, and friable glucoside, is, perhaps, the most important constituent; it is contained in the pulp to the extent of about 2 per cent. Colocynthin is a taste less crystalline principle left after treating the alcoholic extract with cold water in preparing colocynthin. Ash, not to exceed 15 per cent.

The powder should not yield more than 2 per cent. of fixed oil when treated with petroleum benzin—a check test on the 5 per cent. limit of seeds. U.S.P. IX.

Preparation of Colocynthin.—Exhaust alcoholic extract with water, precipitate with lead acetate and subacetate, remove lead from liquid by treating with \( H_2S \), filter, then precipitate with tannin; suspend the tannate in alcohol, decompose with lead hydroxide, remove excess of lead by \( H_2S \), filter and evaporate, and wash the residue with ether.

**ACTION AND USES.**—A **powerful hydragogue cathartic**, given in combination with weaker purgatives. Dose: 3 to 10 gr. (0.2 to 0.6 Gm.).
OFFICIAL PREPARATIONS.

**Extractum Colocynthisis**  
Dose: 1/2 to 2 gr. (0.0324 to 0.13 Gm.).

**Extractum Colocynthisis Compositum** (Extract Colocynth 16 per cent., with aloes, scammony, cardamon and soap),

**Pilulae Catharticae Compositae** (8 per cent. of compound extract)  
5 to 25 gr. (0.3 to 1.6 Gm.).

**Pilulæ Catharticæ Compositæ**  
2 to 5 pills.

545. **BRYONIA**, N.F.—BRYONY. The root of *Bryonia alba* and of *Bryonia dioica* Linné. Off. in U.S.P. 1890. A dull reddish-brown, longitudinally wrinkled root, usually appearing in the market in transverse disks about 50 to 100 mm. (2 to 4 in.) in diameter, of a white or yellowish-white color; bark thin, with a thin, friable cork; the bark is separated by a brown cambium line from the meditullium, in which the wood-bundles are arranged radically and concentrically; the wood-wedges and zones are separated by rather broad rays and concentric circles of parenchymatous tissue; fracture short. Inodorous; taste disagreeably bitter. The active principle is bryonin, $C_{48}H_{80}O_{19}$, an intensely bitter glucoside, soluble in water, but best extracted with strong alcohol. Obtained by precipitating the hydro-alcoholic percolate with tannin. The moist tannin compound is mixed with lead oxide and then digested with alcohol. The alcoholic solution yields bryonin on evaporation. Drastic hydragogue cathartic, formerly much used in the treatment of dropsy, but now superseded by jalap. Dose: 10 to 30 gr. (0.6 to 2 Gm.).

**Tinctura Bryoniae** (10 per cent.)  
(U.S.P. 1890)  
Dose: 1 to 4 fl. dr. (4 to 15 Mils).

546. **LUFFA**.—VEGETABLE SPONGE. WASH-RAG SPONGE. GOURED TOWEL. The gourd-like fruit of *Luffa ægyptiaca*, a vine growing in Arabia and Egypt. The layer of tissue next the epidermis is composed of interwoven woody fibers, and, when deprived of the epidermis, makes a good substitute for sponge. The fruit of *Luffa echinata*, growing in India, contains a principle related to, if not identical with, colocynthitin.
547. **MOMORDICA BALSAMINA** Linné.—**BALSAM APPLE.** This is a climbing East Indian plant, cultivated in our gardens for the sake of its cucumber-like fruit, which is often used in domestic practice as a vulnerary.

548. **PEPO.**—**PUMPKIN SEED**

**PUMPKIN SEED**

The ripe seed of *Cucur'bita pe'po* Linné.

**BOTANICAL CHARACTERISTICS.**—Stem hispid, procumbent; tendrils branched. Leaves very large, cordate, palmately 5-lobed. Fruit yellow, very large (sometimes two feet in diameter), roundish or oblong, smooth, and furrowed.

**HABITAT.**—Tropical Asia and America.

**DESCRIPTION OF DRUG.**—Flat, broadly ovate seeds, about 20 mm. (\(\frac{4}{5}\) in.) long, and 2 mm. (\(\frac{1}{12}\) in.) thick, with a flat ridge and shallow groove around the edge; testa dull white, inclosing two flat, white, oily cotyledons and a short radicle; inodorous; taste bland and oily.

**Powder.**—Microscopical elements of: See Part iv, Chap. I, B.

**CONSTITUENTS.**—From 30 to 40 per cent. of a thick, red fixed oil, an acrid resin, considered to be the tæniafuge principle, starch, sugar, fatty acids, and the proteids, myosin and vitellin, the myosin precipitating from an infusion saturated with NaCl, and the addition of CO\(_2\) separating out the vitellin, apparently identical with that of egg yolk.

**ACTION AND USES.**—Tæniafuge. Dose: 1 to 2 oz. (30 to 60 Gm.), in emulsion.

549. **CITRULLUS.**—**WATERMELON SEED.** The seed of *Cucu'mis citrul'lus* Seringe. Indigenous to Southern Asia, but cultivated extensively in the United States. Differs from the pumpkin seed in being blackish-marbled or brownish in color, somewhat smaller, and with a blunt, ungrooved edge. They are used like pumpkin seeds as a tæniafuge, and also have diuretic and demulcent properties. Dose: 2 dr. to 2 oz. (8 to 60 Gm.).

550. **CUCUMIS SATIVUS** Linné.—**CUCUMBER SEED.** Flat and thin, lanceolong, from 8 to 12 mm. (\(\frac{1}{3}\) to \(\frac{1}{2}\) in.) long, acutely edged, ungrooved, dull white in color. Resembles above in properties.
ELATERIUM.—A peculiar resinous substance obtained from the fruit of *Ecbal'lium elate'rium* A. Richards (squirtling cucumber), a vine growing in the Mediterranean regions of Europe, Africa, and Asia. The fruit, when ripe, separates suddenly from its stalk, and the internal pressure forces the juice out of the aperture thus made in a stream; in collecting, therefore, the fruits are gathered green, sliced, and the juice expressed by slight pressure; on standing it deposits a sediment, which, when dried, forms the commercial Elaterium.

Elaterium is in flat pieces of varying sizes, light and friable, pale green when fresh, but taking on a gray or light buff color as it becomes older; the surface is covered with small crystals of elaterin; odor somewhat tea-like; taste acrid and intensely bitter, due to the active ingredient, elaterin, which constitutes from 25 to 30 per cent. of the drug. This principle is insoluble in water, readily soluble in chloroform and hot alcohol; it is a violent irritant poison; its alcoholic solution is colored red by warm sulphuric acid; its carbolic acid solution, crimson, rapidly changing to scarlet. There is also present ecballin (soft, yellow, acrid), hydroelaterin, and elaterid.

ELATERINUM (U.S.P. IX).—Elaterin.—Exhaust elaterium with chloroform; add ether; white crystals deposit immediately. Wash with ether and recrystallize from chloroform. This principle is odorless and crystalline, is bitter and acrid in taste. No weighable ash remains on incinerating 0.1 Gm. of Elaterin.

ACTION AND USES.—Elaterin is a powerful hydragogue cathartic, used in the treatment of dropsy. Dose: \( \frac{1}{20} \) to \( \frac{1}{12} \) gr. (0.003 to 0.005 Gm.). Preparation: Trituratio Elaterini (10 per cent.). Dose: \( \frac{1}{2} \) gr. (0.030 Gm.).
CAMPANULACEÆ.—Campanula Family

Herbs or shrubbery plants, with acrid, milky juice, alternate leaves, and scattered flowers, corolla 5-lobed. Fruit a one- to several-celled capsule. Many species of the tribe Lobeliæ are acrid-narcotic poisons.
LOBELIA.—LOBELIA

INDIAN TOBACCO

The dried leaves and tops of Lobelia inflata Linné (fam. Lobeliaceæ U.S.P. IX), without the presence or admixture of more than 10 per cent. of stems or other foreign matter.

BOTANICAL CHARACTERISTICS.—Stems much branched from an annual root, pubescent; leaves ovate or oblong, gradually diminishing into leaf-like bracts. Capsule inferior.

RELATED SPECIES.—Lobelia syphilitica (great lobelia), Lobelia cardinalis (cardinal plant).

HABITAT.—United States.

DESCRIPTION OF DRUG.—In the market the herb is broken up, but the fragments of green leaves, small pieces of the longitudinally ridged stem, the rather elongated, dried flowers, and the inflated, membranous capsules serve to identify it; odor irritating when inhaled; taste very pungent, persistently acrid, and tobacco-like.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—Lobeline (a poisonous, acrid, yellowish, aromatic liquid alkaloid), lobelic acid, lobelacrin (an active principle, probably lobelate of lobeline), inflatin (a tasteless, colorless, and odorless, probably inert, neutral principle), resin, fixed oil, gum, probably volatile oil, salts, etc.

Preparation of Lobeline.—Evaporate the acetic alcoholic tincture to syrup; triturate this with MgO in excess; agitate filtrate with ether. Evaporate ether and concentrate over sulphuric acid. It is quite volatile.

Preparation of Lobelacrin.—Obtain by concentrating tincture of lobelia in presence of animal charcoal; exhaust charcoal with boiling alcohol. It is the acrid principle, lobelate of lobeline. Ash, not more than 8 per cent.

ACTION AND USES.—Poisonous²; diaphoretic and expectorant; used in asthma, whooping-cough, and other spasmodic pulmonary affections. In large doses it is a cathartic and emetic, but, being a violent

² — I, of course, disagree with Sayre here...there are probably 30 botanicals in this text more toxic than Lobelia, yet none of them are called “poisonous”. This was a remnant of a then 70 year-old conflict between “regular school” medicine and the “irregulars” and is pure dialectic—Michael Moore

Sayre’s Materia Medica part V - Page 76
gastroirritant, it should not be used for these purposes on account of its danger. Dose: 1 to 15 gr. (0.065 to 1 Gm.). The latter dose as an emetic. The two species, syphilitica and cardinalis, are used medicinally, the former antisyphilitic and diaphoretic and the latter anthelmintic. Both were used by the Indians.

OFFICIAL PREPARATIONS.

**Fluidextractum Lobelie**
**Tinctura Lobelie** (10 per cent.)

Dose: 1 to 5 drops (0.065 to 0.3 mil).

Expectorant 15 drops (1 mil).

Emetic 1 fl. dr. (4 mils).

**COMPOSITAE.—Composite Family**

Herbaceous or woody plants, rarely shrubs, with the flowers in close heads on a common receptacle, and surrounded by a common imbricated involucre. Stamens 5, their anthers united into a tube surrounding the pistil. Flowers of two sorts, strap-shaped or ligulate, and tubular, and hence the family is divided into three tribes: Tubulifloræ (flowers tubular in all the perfect flowers, and ligulate in the marginal or ray-flowers), Ligulifloræ (all the flowers of the head being strap-shaped, ligulate), and Labiatifloræ (with tubular flowers more or less labiate). Fruit an akene.

**Synopsis of Drugs from the Compositae**

A. Roots.
   TARAXACUM, 553.
   Cichorium, 554.
   **PYRETHRUM**, 555.
   Pyrethrum Germanicum, 555 a.
   *Inula, 557.
   *Lappa, 558
   Polymnia, 560.
   Lacinia, 561.
   Helianthella, 562.
   *Echinacea, 563.

B. Rhizomes.
   Arnica Radix, 564.
   Cnicus Arvensis, 566.

C. Leaves.
   Erecithites, 567.
   Trilisa, 568.
   Pertocaulon, 569.
   Guaco, 570.
   Ambrosia, 571.
   Strumarium, 572.
   Spinosum, 573.
   Eupatorium Purpureum, 575.

D. Herbs.
   *Eupatorium, 574.
   **GRINDELIA**, 576.
   Tanacetum, 577.
   *Absinthium, 578.
   Artemisia, 579.
   A. Frigida (a).
   A. Vulgaris (b).
   A. Abrotanum (c).
   Erigeron, 580.
   Erigeron Canadense, 581.
   Gnaphalium, 582.
   Helenium, 583.
   Achillea, 584.
   Tussilago, 585.
   Carduus Benedictus, 586.
   Silphium, 587.
   Mutisia, 588.
   Elephantopus, 589.
   Rudbeckia, 590.
   Bidens, 591.
   *Senecio, 592.
   Solidago, 593.

Lactuca Sativa, 595.
Lactuca Canadensis, 596.
Parthenium, 597.
Cotula, 598.

E. Flowers.
   **MATRICARIA**, 599.
   Anthemis, 600.
   Santonica, 601.
   **ARNICA**, 565.
   *Calendula, 602.
   Carthamus, 603.
   *Pyrethri Flores, 556.

F. Concrete Juice.
   **LACTUCARIUM**, 594.

G. Volatile Oil.
   Oleum Erigerontis, 581 a.
   Oleum Anthemidis, 600 a.

H. Seeds.
   Helianthus, 604.

I. Fruit.
   Lappae Fructus, 559.
TARAXACUM

The dried rhizome and roots of *Taraxacum officinale* Weber. Preserve the thoroughly dried drug in tightly closed containers, adding a few drops of chloroform or carbon tetrachloride from time to time, to prevent attack by insects.

**BOTANICAL CHARACTERISTICS.**
- Root perennial; leaves radical, runcinate, pinnatifid or lyrate; scape hollow. Flower-head solitary, many flowered, yellow. After blossoming, and while the fruit is forming, a pappus raises which soon exposes to the wind the naked fruit, which is blown about.

**SOURCE.**—A plant of very extensive geographical distribution, native to Europe, but very abundant in the United States, where, in some parts, it is a troublesome weed.

Dandelion root may be dug from July to September, during which time the juice it contains becomes thicker and more bitter. The roots should be washed and carefully dried, and care should be taken to avoid maggots, which attack the well-dried roots.

**DESCRIPTION OF DRUG.**—The dry root is fleshy, long, and tapering, seldom branching; 5 to 25 mm. to 1 in.) thick at the top, surmounted by several heads. Externally brownish, soon darkening by exposure. In the fall, about November, the root acquires a deep orange color throughout. **Internally** white, abounding in a bitter, inodorous, milky juice. A **cross-section** displays a **thick, white bark** with numerous concentric circles of laticiferous vessels surrounding a **yellow woody center**. The central column is easily separated from the thick bark, when the former is found to have along its exterior at intervals minute knotty projections; a cross-section of the root at this point shows woody fibers branching from the ligneous cord, penetrating, and passing through, the bark.
Inulin spherules are plainly discernible under the microscope if, before sectioning, the fresh root be macerated in alcohol. The root loses in drying from 78 to 88 per cent. of moisture. The dried root is
longitudinally and spirally wrinkled; when quite dry, has a brittle fracture, showing a dark brown exterior and a thick, white bark.

Powder.—Characteristic elements: See Part iv, Chap. 1, B.

CONSTITUENTS.—Taraxacin (a bitter principle), taraxacerin, \( \text{C}_9\text{H}_{15}\text{O} \), resin, inulin, sugar, and mucilaginous substances. The percentage of sugar varies with different seasons and with condition of soil; it is said to diminish in the summer. Recent investigations have shown the existence of an alkaloid. But this has been found to be exceedingly minute—a mere trace. Ash, not more than 10 per cent.

Preparation of Taraxacin.—Treat decoction with animal charcoal, wash the latter with water, and dissolve out bitter principle with boiling alcohol; evaporate. It has not been proven that this is crystalline. Composition uncertain.

ACTION AND USES.—Deobstruent, tonic. As a remedial agent dandelion root has not been properly appreciated, possibly because it is such a common weed. It is worthy of more study on the part of pharmaceutical chemists and clinicians. The fluidextract and extract are used in hepatic disorders. Dose: 1 to 4 dr. (4 to 15 Gm.)

OFFICIAL PREPARATIONS.

<table>
<thead>
<tr>
<th>Preparation</th>
<th>Dose: 1 to 4 fl. dr. (4 to 15 mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluidextractum Taraxaci</td>
<td>5 to 60 gr. (0.3 to 4 Gm.)</td>
</tr>
</tbody>
</table>

554. CICHORIUM.—CHICORY. The root of Cichorium intybus Linné. Habitat: Europe; naturalized in the United States. Nearly cylindrical, resembling dandelion, but lighter in color, more woody, with a thinner bark, and with the laticiferous vessels of the woody column and the bark arranged radially; very bitter. It contains inulin and a bitter principle. Bitter tonic in doses of 15 to 60 gr. (1 to 4 Gm.), in decoction. Its greatest demand is as an adulterant of coffee. It should be stated, however, that roasted chicory has become a favorite in many parts as a coffee substitute. The cultivation of the plant for this purpose and as a forage plant has grown to be a permanent agricultural industry in nearly every country of Europe and in many parts of the United States.

555. PYRETHRUM.—PYRETHRUM

PELLITORY. ROMAN PELLITORY

The root of Anacyclus pyrethrum (Linné) De Candolle. Preserve in tightly closed containers, adding a few drops of chloroform or carbon tetrachloride, to prevent attack by insects.
BOTANICAL CHARACTERISTICS.—Root long, fusiform. Stems numerous, branched, pubescent. Radical leaves pinnatifid, stem-leaves sessile. Florets of the ray pistillate, white above and purplish beneath; of the disk, yellow, tubular, 5-toothed. Akene flat, winged; pappus short.

Anacyclus Pyrethrum: A, expanded flower; B, involucre seen from below; C, dried flower.

SOURCE.—Mediterranean Basin, coming solely from Algeria, thence to Mediterranean points.

DESCRIPTION OF DRUG.—A **hard, compact** somewhat fusiform root, about the size of the little finger, with sometimes leaf-remnants at the top, and beset with few or no hair-like rootlets; externally brownish, **deeply fissured** longitudinally. It breaks with a short fracture, showing a rather thick bark adhering closely to the pale brown wood, from which it is separated by a narrow cambium line. This woody column is traversed by broad, distinct medullary rays, and contains! as does also the bark, large scattered resin ducts. Odor very slight-, taste slight at first, but afterward **persistently acrid**, leaving a singular tingling sensation in the mouth and throat, and exciting a remarkable flow of saliva.

555a. Pyrethrum Germanicum, from Anacyclus officinarum Hayne, is of a grayish color, about half as thick as above, tapering to filiform at the lower end; has long been cultivated near Magdeburg and in Saxony. It resembles the above in foliage and flowers.

CONSTITUENTS.—A very acrid resinous substance, two acrid oils—pyrethrine, extracted by ether (crystalline, bitter, burning taste), which under action of alcoholic KOH decomposes into piperidine. Most of the parenchymatous cells are loaded with inulin, which forms about 35 per cent. of the root. Ash, not more than 5 per cent.

ACTION AND USES.—Used almost exclusively as a **sialagogue** in headache, neuralgic and rheumatic affections of the face, toothache, etc., or as a local stimulant in palsy of the tongue or throat, or relaxation of the uvula. Dose when chewed: 30 to 60 gr. (2 to 4 Gm.).

OFFICIAL PREPARATION.

**Tinctura Pyrethri** (20 per cent.) Used externally.

556. **PYRETHRHI FLORES**.—**INSECT FLOWERS**. The flowers of (1) Pyrethrum carneum and Pyrethrum roseum Weber, yielding, when powdered, Persian or Caucasian Insect Powder, and (2) **Pyrethrum cinerinæfoliüm** Visiani, yielding Dalmatian Insect Powder, which is more powerful than the Persian powder; this latter is now produced of very superior quality in California by cultivation. The plants resemble matricaria and bear flower-heads about 38 mm. (1½ in.) in diameter, surrounded by an imbricate involucre, (1) having brownish scales with a white scarious (membranous) edge, whitish ray-florets, and yellow disk-florets, and (2) having greenish involucral scales with scarious edge, rose-colored ray-florets, and yellow disk-florets. The flowers seldom come in market, but are in the form of a yellowish-brown or yellowishgreen powder, which is used either as a powder or in tincture as an insecticide. It is not actively poisonous to human beings. Its strength
or purity, and the variety from which obtained, may be ascertained by microscopical examination. A deficiency of pollen and presence of sclerenchymatous tissue would show a scarcity of flowers and the presence of stems in the powder, and consequent inferiority in strength.

557. **INULA**, N.F.—ELECAMPANE. The root of *Inula Hele'nium*. Off. in U.S.P. 1890 Found in the market in slices cut in various directions. Externally grayish-brown, wrinkled, with overlapping bark. Internally gray. When dry, breaks with a horny fracture. Odor aromatic, suggestive of orris and camphor; taste slightly bitter, warm, aromatic. Gentle stimulant and tonic, supposed also to have diaphoretic, diuretic, expectorant, and emmenagogue properties. Chiefly used in this country for dyspepsia and pulmonary troubles. Dose: ½ to 2 dr. (2 to 8 Gm.), in powder or decoction.

558. **LAPPA**, N.F.—LAPPA

**BURDOCK ROOT**

The dried root of *Arctium lappa* Linné, and possibly of other species of Arctium, collected from plants of the first year's growth.

**BOTANICAL CHARACTERISTICS.**

—Root biennial, fusiform; stem 1 to 3 feet high. Leaves strong-smelling, ovate, with cordate and crenate base, or lanceolate, with cuneate base. Involucrum composed of imbricated coriaceous scales, the stiff, needle-like points of which are hooked. Heads solitary or clustered; flowers white or light purple, all tubular. Akenes oblong, flattened.

**DESCRIPTION OF DRUG.**—A fusiform, fleshy root several inches in length and about 25 mm. (1 in.) thick, sometimes sliced longitudinally; grayish-brown, longitudinally wrinkled from drying, and having withered scales near the top; **internally** lighter colored, spongy, a **cross-section** showing a thick bark (in young roots, thin in old), the inner layer of which, and the medullum, is traversed by broad medullary rays. Fracture horny. It has a slight unpleasant odor, and a sweetish, somewhat bitter taste.

**Powder.**—Brownish-gray. Characteristic elements: Parenchyma of cortex, thin-walled, elongated with glassy masses and sphæro-crystals of inulin; ducts large and small, with reticulate, simple pores; wood fibers and resin ducts, few.
CONSTITUENTS.—Mucilage, sugar, fat, a little tannin, a bitter glucoside, and inulin.

ACTION AND USES.—Diuretic, diaphoretic, and alterative. Dose: 1/2 to 2 dr. (2 to 8 Gm.). Fluidextractum Lappae, Dose: 1/2 to 2 fl. dr. (2 to 8 mils).

559. LAPPÆ FRUCTUS.—BURDOCK FRUIT. A somewhat angular fruit, about 6 mm. (1/4 in.) long, rough and wrinkled, and covered with short, stiff hairs, which are easily rubbed off. Very bitter. A tincture is used in psoriasis and other skin diseases.

560. POLYMNIA UVEDALIA Linné.—BEARSFOOT. An indigenous plant, the root of which, in ointment form, has had virtues ascribed to it as a discutient and anodyne, particularly in the treatment of malarial splenic enlargements.

561. LACINIARIA SPICATA Willdenow.—BUTTON SNAKEROOT. Habitat: United States. (Root.) Diuretic; also used as a gargle and injection. Dose: 1/2 to 2 fl. dr. (2 to 8 mils).

562. HELIANTHELLA TENUIFOLIA Torrey and Gray.—The root of this plant has the properties of an aromatic expectorant and antispasmodic, used as an addition to cough mixtures.

563. ECHINACEA, N.F.—The root of Echina'cea angustifo'lia De Candolle. Habitat: Western United States. This plant has grown into considerable importance, especially among the eclectic practitioners, in the treatment of phagedenic ulcerations, boils, various forms of septicaemia, etc. The common name of the plant is “nigger-head.” The flower-head has from twelve to fifteen rays, 2 inches long, rose-colored or red, drooping; receptacle conical, with finely tipped chaff, longer than the disk-florets; disks purplish. The root has a brownish-black color, the epidermis
shrunken causing longitudinally twisted wrinkles. Over 200,000 pounds were consumed in 1903, Since that time the demand has been kept up quite regularly at the same figure.

In cross-section are seen wood-wedges and medullary rays, colored dark gray or blackish; fracture short and rough; taste peculiar and somewhat acrid and biting, reminding one of pyrethrum; odor heavy, mousey, accompanied by a peculiar pungency. The root contains a very small percentage of alkaloid and a crystalline principle soluble in carbon disulphide. Active principle contained, apparently, in an oleoresin which represents the medicinal properties. Allied species: Echinacea purpurea.

564. ARNICA RADIX.—ARNICA ROOT. A horizontal, contorted rhizome about 50 to 75 mm. (2 to 3 in.) long, and 3 to 4 mm- (\(\frac{1}{8}\) to \(\frac{1}{6}\) in.) thick; externally dark brown, rough from scars, longitudinally wrinkled, and beset with numerous thin, fragile rootlets. Fracture short, showing a rather thick bark containing a circle of resin cells near the cambium line, a circle of short, yellowish wood-bundles, and a very large, whitish pith. Odor slightly aromatic; taste pungent and bitter. Adulterated with other roots of the Compositae, also with Geum urbanum roots and Fragaria vesca Off. in U.S.P. 1890. Stimulant and tonic. Dose: 5 to 30 gr. (0.3 to 2 Gm.).
565. ARNICA.—AR NICA FLOWERS

The dried flower heads of Ar’nica montana Linné.

DESCRIPTION OF DRUG.—About 25 mm. (1 in.) in length and 15 to 20 mm. (3/5 to 4/5 in.) in diameter, surrounded by lanceolate, involucral scales; the receptacle is flat, and bears about 15 to 20 bright yellow, ligulate ray-florets, 3-toothed, striate, about 25 mm. (1 in.) long, and numerous shorter, tubular disk-florets; pappus long and hairy giving the heads a characteristic appearance; odor peculiar and agreeable; taste persistently acrid and bitter. The powder is sternutatory. Adulterated with many flowers of the Compositae, such as calendula, anthemis, inula, senecio, etc.

CONSTITUENTS.—Four per cent. of arnicin, and 0.04 to 0.07 per cent. of butyrous volatile oil. A bitter alkaloid arnicine with crystallizable salts was reported, but has not since been confirmed. Ash, not more than 9 per cent.

ACTION AND USES.—Same as the root. Dose: 15 to 30 gr. (1 to 2 Gm.). The tincture is used externally as a vulnerary.

OFFICIAL PREPARATION.

Tinctura Arnicae (20 per cent.) Dose: 10 to 30 drops (0.6 to 2 Mils).

566. CNICUS ARVENSIS Hoffmann.—CANADA THISTLE. An indigenous plant, the rhizome of which is popularly used for its astringent properties.

567. ERECHTHITES HIERACIFOLIA Rafinesque.—FIREWEED. Habitat: United States. (Leaves.) The name (fireweed) comes from the fact that the plant springs up
spontaneously in burned districts. Tonic and astringent in dysentery, etc. Dose: 10 to 60 gr. (2 to 4 Gm.). The volatile oil of this plant has been used to adulterate the oil of erigeron.

568. **TRILISA ODORATISSIMA** Cassini.—DEER TONGUE. VANILLA LEAF. This plant contains **coumarin**, and the leaves are used in the Southern States to flavor tobacco. Aromatic, stimulant, and tonic; used as a corrective. Dose 30 to 60 gr. (2 to 4 Gm.).

569. **PTEROCAULON PYCNOSTACHYON** Elliott.—BLACK ROOT. Leaves used by the Indians as an alterative. Dose: 15 to 30 gr. (1 to 2 Gm.).

570. **GUACO**.—By this name are known the leaves and roots of various herbs belonging to the genus **Mikania**, growing in Central and South America, where they are used as a febrifuge, anthelmintic, alterative, and alexipharmic. They at one time gained considerable attention in Europe in the treatment of epidemic cholera and chronic diarrhea. Dose: 15 to 30 gr. (1 to 2 Gm.).

571. **AMBROSIA ARTEMISIÆFOLIA** Linné.—RAGWEED. The leaves of this common weed have been used in domestic practice as an astringent, styptic, and hemostatic.


572. **STRUMARIUM**.—CLOTBUR. COCKLEBUR. The leaves of **Xanthium struma’rium** Linné. Hemostatic and styptic.

573. **SPINOSUM**.—SPINY CLOTBUR. The herb of **Xanthium spino’sum** Linné. Diaphoretic, sialogogue, and diuretic. It is asserted that it has been used with success in warding off hydrophobia. Dose of fluidextract: 15 to 30 drops (1 to 2 Mils).
574. EUPATORIUM, N. F.—EUPATORIUM
BONESET. THOREWHWORT
The dry leaves and flowering tops of *Eupatorium perfoliatum* Linné.

DESCRIPTION OF DRUG.—As it appears in the market, the drug consists of broken, wrinkled fragments of the dark green leaves and corymbs of the numerous white florets. The leaves have a rough upper surface, and downy, resindotted lower surface. Odor faintly aromatic; taste strongly bitter and slightly astringent.

Powder.—Yellowish-green. Characteristic elements, Sclerenchyma with bast fibers, thin-walled, very slightly or not at all lignified; ducts, spiral, annular, with bordered pits; trichomes, glandular and non-glandular present, 2- to 12-celled, of different shapes; stomata present; pollen, ellipsoidal (10 to 20 µ diam.); pappus, multicellular axis, unicellular branches.

CONSTITUENTS.—A peculiar, bitter, crystallizable glucoside (*eupatorin*), soluble in boiling water, alcohol, other, and chloroform; resin, gum, tannin, and an undetermined wax-like, crystalline matter.

ACTION AND USES.—Stimulant and tonic, in large doses emetic and cathartic, and as a diaphoretic often used in warding off a cold and in fevers. Dose: 30 to 60 gr. (2 to 4 Gm.), in infusion, powder, or fluidextract, which was formerly official.

575. **EUPATORIUM PURPUREUM** Linné.—QUEEN OF THE MEADOW. GRAVEL ROOT. The leaves and root of this indigenous plant are an excellent diuretic. Also tonic, stimulant, and somewhat astringent. Dose: 30 to 60 gr. (2 to 4 Gm.).

576. **GRINDELIA.**—GRINDELIA

**GRINDELIA**

The dried leaves and flowering tops of *Grindelia camporum* Greene, or *Grindelia cuneifolia* Nuttall, or *Grindelia squarrosa* (Pursh) Nuttall, without the presence of admixture of more than 10 per cent. of stems and other foreign matter.

BOTANICAL CHARACTERISTICS.—Woody herbs; leaves clasping, resinous, somewhat cuneate. Involucre hemispherical or globular, coated with resin; rays fertile, yellow; disk-florets yellow, tubular, and perfect. Akenes compressed, the outermost somewhat triangular; pappus awned. *Grindelia robusta* is found in rather elevated regions, while *G. squarrosa* is found in the plains. The former is more woody than the latter.

SOURCE.—This genus inhabits the western part of both North and South America. A resinous exudation is common to the various species of the genus, being most abundant in the flower-heads, and it is possible that medicinal properties are common to the genus. Besides the official
species, there are found the hirsutula and the glutinosa, similar species growing in the western part of the United States, often cultivated and mixed with the official.

DESCRIPTION OF DRUG.—Rough, grayish-green fragments of the leaves, mixed with brownish-yellow stem fragments, and with flower-heads about 15 mm. (3/5 in.) in diameter, usually destitute of florets, leaving the bare receptacle surrounded by the stiff, varnished, resinous bracts of the involucre; odor balsamic; taste aromatic and bitter.

Distinction of the Two Species.—It may be said that the two species, squarrosa and robusta, resemble each other very much. Robusta is said to have a more leafy involucre and the leaves to be more coarsely serrate. The squarrosa in general is said to be less leafy and bushy, but on close examination of numerous specimens it is a question whether the distinction will hold.

Powder.—Characteristic elements: See Part iv, Chap. I, B.

CONSTITUENTS.—The medicinal properties of grindelia seem to reside in the resinous exudation. An alkaloid principle has been claimed by some investigators and termed grindeline.

ACTION AND USES.—Antispasmodic and sedative, in asthma. Dose: 15 to 60 gr. (1 to 4 Gm.). The fluidextract is said to be an efficient application in rhus poisoning.

OFFICIAL PREPARATION.

Fluidextractum Grindeliæ  Dose: 15 to 60 drops (1 to 4 mils).

577. TANACETUM.—TANSY. The leaves and tops of Tanacetum vulgare Linné. Off. in U.S.P. 1890. Leaves pinnate, the lobes sharply serrate, in wrinkled, broken pieces mixed with the reddish stems; midrib heavy and prominent on under side; odor strong, fragrant, diminished by drying; taste bitter, somewhat mint-like. Constituents: Tanacetin, C_{11}H_{16}O_{4} (a bitter principle), malic acid, volatile Oil (0.25 per cent.), tannin, resin, etc. Stimulant, tonic, emmenagogue, and anthelmintic. The dose of the volatile oil is from 1 to 5 drops; used also as a domestic abortifacient and as a remedy for amenorrhea. Its use should be prohibited except upon physician's order, as it is a dangerous drug. Dose: 15 to 60 gr. (1 to 4 Gm.), in infusion.

578. ABSINTHIUM.—WORMWOOD, N.F. The leaves and tops of Artemisia absinthium Linné. Off. U.S.P. 1890. Consists of the grayish, softly, hairy,
longitudinally ribbed or furrowed stems with the petiolate, pinnatifid, pubescent leaves mostly broken beyond recognition; flower-heads in racemes, hemispherical, about 3 mm. (1/8 in.) broad; receptacle small, hairy, convex, with all yellow, tubular florets; akenes obovoid, without pappus; odor strongly aromatic; taste intensely bitter and nauseous. Constituents: Tannin, resin, malates, absinthin, C_{15}H_{20}O_{4} (a bitter glucoside), absinthetic acid (probably succinic acid), and a dark green volatile oil, about 1 per cent. (mainly absinthol), which has the odor of the drug, and when mixed with alcohol and oil of anise constitutes the absinthe of the French. Stomachic, tonic, anthelmintic and febrifuge. Dose: 15 to 60 gr. (1 to 4 Gm.).

Isolation of Absinthin.—Obtained by precipitating infusion, previously deprived of color, with tannin. The alcoholic extract of this precipitate is mixed with lead oxide and again extracted with alcohol. Absinthia deposits on evaporation of this tincture.

579. **ARTEMISIA**.—Nearly all the varieties of *Artemisia* seem to have similar properties—anthelmintic. Besides absinthium and santonica, some common indigenous plants of this genus are more or less used in medicine:

579a. **ARTEMISIA ABROTANUM**.—SOUTHERNWOOD. OLD MAN.

579b. **ARTEMISIA VULGARIS**.—MUGWORT. Also alterative and emmenagogue, and externally as a vulnerary.

579c. **ARTEMISIA FRIGIDA**.—MOUNTAIN SAGE. Antiperiodic; first introduced as a substitute for quinine.

579d. **ARTEMISIA TRIDENTATA**.—SAGE BRUSH—of the Rocky Mountains. *A. trifolia*, the dwarf variety of the above, and *A. dracunculus* Tarragon, are well known, but only used locally in making domestic remedies of aromatic, bitter, and tonic character.

580. **ERIGERON**.—FLEABANE. DAISY FLEABANE. The herb of *Erig'eron an'nuus* Persoon, *E. philadelphicus* Linné, and *E. strigosus* Muhlenberg. Habitat: North America and Europe. All resemble one another and are indiscriminately employed in medicine. They have erect stems, much branched at the top, bearing terminal corymbs of wheel-shaped flowers having delicate, thread-like, white or purple ray-florets and yellow disk-florets; all parts of the plant are pubescent. Taste bitterish; odor feebly aromatic, due to a small quantity of volatile oil. Diuretic and stomachic, sometimes used in the treatment of gravel and dropsy. Dose: 30 to 60 gr. (2 to 4 Gm.).
581. **ERIGERON CANADENSE** Linné.—CANADA FLEABANE. Habitat: North America. (Herb.) This differs from the other species principally in having a bristly stem and flowers with very inconspicuous ray-florets and straw-colored disk-florets. Odor aromatic; taste bitterish, somewhat acrid. It contains a bitter principle, and a volatile oil which is OFFICIAL in the U.S.P. VIII. Properties and dose about the same as preceding.

581a. **OLEUM ERIGERONTIS**, U.S.P. VIII.—(CANADA FLEABANE.) A limpid, straw-colored liquid becoming thick and dark on exposure; odor aromatic, persistent; taste characteristic. Adulterated with the oil of fireweed, *Erechtites hieracifolia* (567). Stimulant and diuretic, resembling oil of turpentine in action, especially as a hemostatic, but is less irritating and stimulating. Dose: 10 to 30 drops (0.6 to 2 Mils).

582. **GNAPHALIUM**.—LIFE EVERLASTING. The herb of *Gnaphalium polycephalum* Michaux. Habitat: North America. Leaves lanceolate, entire, woolly, sessile on the erect stem, which is branched, and bears dense terminal clusters of small obovate flower-heads surrounded by dry, whitish involucres; florets yellow, tubular; odor pleasant, taste aromatic, bitterish. It probably possesses little medicinal value, but is a popular domestic remedy, used as a tea in diarrhea, hemorrhages, etc., and externally in a fomentation as a vulnerary. Dose: 30 to 60 gr. (2 to 4 Gm.).

583. **HELENIUM**.—SNEEZEWORT. The herb of *Helenium autumnale* Linné. Habitat: North America. A square-stemmed herb, the leaves and flowers of which, when powdered and snuffed up the nose, produce violent sneezing, hence the name sneezewort. It has been used as an errhine.

584. **ACHILLEA**.—YARROW. MILFOIL. The herb of *Achillea millefolium* Linné, common in Europe and North America. Stem hairy, branched at top bearing the large corymbs of white flower-heads, each composed of five pistillate ray-florets, and greenish-white, perfect disk-florets; leaves lanceolate, thrice pinnatifid, the divisions linear. In market, however, the leaves are broken or crumpled, and the flower-heads destitute of florets; odor chamomile-like; taste aromatic, bitterish, and astringent. Used as a vulnerary and occasionally as an internal remedy for hemorrhages and mucous discharges, as in consumption. Dose: 30 to 60 gr. (2 to 4 Gm.), in infusion.

585. **TUSSILAGO**.—COLTSFOOT, N.F. The herb of *Tussilago farfara* Linné. Habitat: Europe, and Middle and Northern United States, along the banks of streams. Demulcent, popularly used in the
treatment of coughs (hence the name, from tussis, cough). Its expectorant properties are not pronounced, however. Dose: 30 to 60 gr. (2 to 4 Gm.), in decoction.

586. **CARDUUS BENEDICTUS.**—BLESSsed THISTLE. The herb of *Cnicus benedictus* Gaertner. Habitat: Levant and Europe. The drug consists of the woolly stems, with the soft, spiny leaves and a few of the large, ovate, yellow flower-heads; it has a slight, unpleasant odor and a very bitter taste. In cold infusion it is a bitter tonic, in hot infusion in large quantities diaphoretic and emetic. *Cnicus marianus* Gaertner has been used for the same purposes, and in Europe as a depurative.

587. **SILPHIUM LACINIATUM** Linné.—ROSIN WEED. Habitat: United States. (Herb or root.) It has given good results in intermittent fevers, and in dry, obstinate coughs, its action being somewhat like grindelia.

588. **MUTISIA VICIÆFOLIA.**—CHINCHIROCOMA. This herb is said to be a valuable antispasmodic and cardiac tonic.

589. **ELEPHANTOPUS TOMENTOSUS** Linné.—ELEPHANT’S FOOT. Habitat: United States. (Herb.) Diaphoretic and expectorant; in large doses emetic. Dose: 5 to 30 gr. (0.3 to 2 Gm.).

590. **RUDBECKIA LACINIATA** Linné.—THIMBLE WEED. CONE FLOWER. This indigenous herb is used in catarrhal affections of the urinary tract. Diuretic and tonic. Dose: 15 to 60 gr. (1 to 4 Gm.).

591. **BIDENS BIPINNATA** Torrey and Gray.—SPANISH NEEDLES. An indigenous herb, popularly used as an emmenagogue. Dose: 15 to 60 gr. (1 to 4 Gm.).

592. **SENECIO AUREUS** Linné, N.F.—LIFE-ROOT. RAGWORT. (Herb.) Used by the Indians as a vulnerary. Emmenagogue. Dose: 30 to 60 gr. (2 to 4 Gm.), in infusion, decoction, or fluidextract.

593. **SOLIDAGO.**—GOLDEN ROD. The herb of *Solidago odora* Aiton. (See Conspectus.) Aromatic, stimulant, carminative, and diaphoretic, in infusion. Used also to disguise the taste of other medicines.

594. **LACTUCARIUM.**—LACTUCARIUM

LETURCE-OPIUM

The concrete milk-juice of *Lactuca virosa* Linné.

BOTANICAL CHARACTERISTICS.—A biennial, rank-smelling herb, abounding in a milky, acrid juice. Root napiform; stem 2 to 4 feet high, erect, slender, glaucous, slightly prickly below, covered here and there with blood-red spots. Leaves with midrib prickly, otherwise smooth, finely toothed; radical leaves obvate, undivided, those of the stem lobed, aurided, and partly clasping. Flower-heads panicled, with small heart-
shaped bracts; flowers all ligulate, perfect, light yellow.

SOURCE.—Europe; chiefly produced in Scotland, France, and Prussia.

DESCRIPTION OF DRUG.—In sections of plano-convex circular cakes, or angular pieces, of a grayish or reddish-brown color, breaking with a waxy, yellowish-white fracture; odor opium-like and disagreeable, characteristic; taste bitter and acrid. It is partly soluble in alcohol and ether. When triturated with water it yields a turbid solution; boiling water dissolves about 50 per cent., forming a brown infusion.

Powder.—Grayish-brown to dark brown, consisting almost entirely of irregular, angular masses, without any cellulose structure; when mounted in hydrated chloral T.S. the fragments become clear, showing a granular ground mass; from this separated rod-shaped crystals, monoclinic prisms and rosette-shaped crystal-like masses.

To powder lactucarium, the crude drug should be dried at a temperature not exceeding 70ºC.

CONSTITUENTS.—Lactucin, lactucopicrin (very bitter and acrid), lactucic acid, $O_{44}H_{32}O_{21}$ (very bitter, probably an oxidation product of lactucopicrin), lactucerin (lactucone), and wax. Ash, not more than 10 per cent.

Preparation of Lactucerin, Lactucone.—Boiling alcohol extracts it in almost pure state from lactucarium, which has been deprived of resin and caoutchouc.

ACTION AND USES.—Anodyne, hypnotic, and sedative, resembling opium in its action, but much feebler and without the depressing aftereffects. Dose: 5 to 60 gr. (0.3 to 4 Gm.).

OFFICIAL PREPARATIONS.

- **Tinctura Lactucarrii** (50 per cent.), Dose: 10 to 60 drops (0.6 to 4 mils)
- **Syrupus Lactucarrii** (10 per cent. of Tincture) $\frac{1}{2}$ to 2 fl. dr. (2 to 8 Milis).

595. **LACTUCA SATIVA**.—GARDEN LETTUCE. Popularly used as a mild antispasmodic to allay nervous irritability and mental worry. It yields a lactucarium during flowering, but before that period the juice is pellucid and insipid.

596. **LACTUCA CANADENSIS**.—WILD LETTUCE. Used as a mild soporific for children. Dose: 20 gr. (1.3 Gm.).
597. **PARTHENIUM.**—FEVERFEW. The herb of *Matrica'riaparthe'nium* Linné. Habitat: Europe; cultivated in this country. Resembles chamomile in odor and taste, in medical properties, and also in the appearance of the flowers, which differ, however, in their peculiar odor, their rounded and somewhat flattened receptacle, and the numerous large and long disk-florets which they bear.

598. **COTULA.**—MAYWEED. WILD CHAMOMILE. The herb of *Anthe'mis cotu'la* Linné. Habitat: Europe; naturalized in the United States. It has essentially the same properties as anthemis and chamomile, but has a disadvantage for general use in its strong, disagreeable odor. It is popularly used as a sudorific and antispasmodic, in doses of $\frac{1}{2}$ to 2 dr. (2 to 8 Gm.), in infusion.
GERMAN CHAMOMILE

The dried flower-heads of Matricaria chamomilla Linné.

BOTANICAL CHARACTERISTICS.—Plant annual; stem 1 to 2 feet high, much branched. Leaves alternate, more or less pinnate, smooth. Heads solitary; ray-florets white, pistillate, spreading, soon reflexed; disk-florets deep yellow, perfect; pappus none. The flowers have a peculiar aroma and a bitter aromatic taste.

SOURCE.—Europe and Asia. The genus Matricaria is widely distributed; two or three species of the “wild chamomile” of this genus have been introduced into the United States.

DESCRIPTION OF DRUG.—After drying, the flower-heads are of a dull yellow or yellowish-white color, about 10 mm. (2/5 in.) broad, surrounded by a flattish, imbricated involucre; this involucre is composed of oblong scales, having a membranous, translucent margin; the receptacle is conical, internally hollow, and bears a single row of about fifteen short, toothed, reflexed ray-florets, and numerous tubular yellow disk-florets, without pappus; disagreeably aromatic; taste bitterish, aromatic.

Powder.—Greenish. Characteristic elements: The interesting microscopical constituent for study is found in the pollen grains with three distinct pores; seldom dispensed as powder.

ADULTERATIONS.—Anthemis arvensis and A. cotula. These have solid, chaffy receptacles.

CONSTITUENTS.—Deep blue volatile oil, anthemic acid, anthemidin, and tannin. Ash, not more than 13 per cent.

Preparation of Anthemic Acid.—The concentrated infusion, made with water acidulated with acetic acid, is precipitated with alcohol. The alcoholic residue, after evaporation of the alcoholic solution, is treated with chloroform. The precipitate produced by alcohol contains anthemidin.

ACTION AND USES.—Mild stimulant and tonic, in large doses emetic. Dose: 15 to 60 gr. (1 to 4 Gm.) in infusion.

600 ANTHEMIS.—ANTHEMIS, U.S.P. VIII

ROMAN CHAMOMILE. ENGLISH CHAMOMILE

The dried flower-heads of Anthemis nobilis Linné, collected from cultivated plants.
SOURCE.—Europe; cultivated in Germany, England (Mitcham Gardens), Surrey; introduced in United States.

DESCRIPTION OF DRUG.—There are two kinds of flower-heads, the single and the double. The latter is developed by cultivation, the disk-florets being partly or wholly converted into the white, strap-shaped, three-toothed ray-florets, forming an almost spherical head, dull white when dry and about 20 mm. (4/5 in.) broad; it is the kind preferred, on account of its greater aromatic properties, which reside in the rays, but
as the conversion is more or less incomplete, both kinds may be found intermingled in the commercial article. It is stated, however, by some that the single flowers are more odoriferous and yield a larger proportion of volatile oil; the double flowers, being more showy, are preferred by the public. Involucre imbricate, the scales ovate-oblong, with a scarious margin; receptacle solid, conical, chaffy; odor strong, agreeable; taste aromatic and bitter.

Powder.—Straw color. Characteristic elements: Trichomes, glandular, single-celled, thick-walled; pollen and stomata present.

CONSTITUENTS.—Volatile oil (Oleum Anthemidis, 1 per cent.), at first pale blue, becoming yellowish-brown on exposure; it is regarded as a mixture of hydro carbons with the angelic, valerianic, and tiglinic esters of butyl and amyl. Anthemis also contains a brown, bitter extractive, probably a glucoside. Ash, about 6 per cent.

ACTION AND USES.—Stimulant and tonic, in enfeebled digestion during convalescence; also carminative, and in large doses emetic. Dose: 15 to 60 gr. (1 to 4 Gm.), in infusion.

601. SANTONICA.—SANTONICA, U.S.P. VIII
LEVANT WORMSEED

The dried unexpanded flower-heads of Artemisia pauciflora Weber.

BOTANICAL CHARACTERISTICS.—A low, shrubby, tomentose, aromatic plant. Leaves downy, pinnatifid; flower-heads drooping, in dense thyrsoid panicles.

SOURCE.—Artemisia pauciflora grows on the desert plains or steppes of several parts of Russia, especially in the districts near the lower course of the Volga and Don Rivers. It is quite abundant in Persia and Turkestan, where it is known as Damanah. This Asiatic drug does not differ materially from the Russian, except that it is slightly shaggy and mixed with tomentose stalks. Of late years most of the wormseed of commerce has come from the steppes of the northern part of Turkestan, whence it finds its way to Moscow and Western Europe.

DESCRIPTION OF DRUG.—Greenish-brown, small, oblong-ovoid, about 2 mm. (1/8 in.) long. They consist of fifteen to eighteen imbricated scales, each having a green midrib containing oil-glands, which inclose four or five tubular florets so minute that they can scarcely be distinguished by the naked eye; odor strong, aromatic; taste bitter, aromatic, camphoraceous.
Powder.—Greenish-brown. Characteristic elements: Parenchyma cells, elongated, thin-walled; trichomes, glandular, 1 or 2 short cells or two or three pairs of cells, non-glandular, one-celled, long, slender, thin-walled; pollen mostly in masses, brown, 15 to 20 µ in diam.; pores distinct.

CONSTITUENTS.—Volatile oil about 1 per cent., having a characteristic smell and taste, devoid of anthelmintic properties, which reside in the neutral principle, santonin, C₁₅H₁₈O₃₁. Santonin (Santonium, U. S.) constitutes about 2 per cent. of the drug; it occurs in colorless, rectangular, tabular crystals, which, when exposed to the light, assume a yellow hue. Soluble in 5300 parts of water, 34 of alcohol, 78 of ether and 2.5 of chloroform at 25ºC. (77ºF.).

Preparation of Santonin.—Digest powdered Santonica in dilute alcohol mixed with slaked lime; recover alcohol; add acetic acid in excess to residue, which separates santonin in white, shining, odorless bitter prisms, turning yellow on exposure.

This important principle is manufactured to a considerable extent in Russia, large factories at Oldberg turning out about twelve tons annually. It is well known to the natives of India, and is now imported from Germany. Much of the imported santonin is adulterated, sometimes to the extent of three-fourths of its weight, with gum and boric acid. These can easily be detected upon exposure as santonin turns yellow. The quantity of santonin in the plant diminishes as the plant grows older and the flowers expand.

Tests.—On dissolving with nitric acid and adding sulphuric acid we get a red color, and on adding Fe₂Cl₆ it changes to violet. With an alcoholic solution of KOH a pinkish-red liquid is obtained, soon becoming colorless.

On account of the fact that santonin is easily decomposed, it should be kept in amber-colored bottles, away from the sunlight, which converts it into yellow photo-santonic acid. Heating it with alkalies changes it into santoninic acid, while long boiling with baryta water changes it into santonic acid.

ACTION AND USES.—Anthelmintic. Dose; 15 to 60 gr. (1 to 4 Gm.), in infusion or electuary. Dose of santonin: 1/4 to 1 gr. (0.016 to 0.065 Gm.), in powder or troches. Trochisci Santonini, U.S. VIII., 1/2 gr. (0.03 Gm.).

602. CALENDULA.—CALENDULA, N.F.

MARIGOLD

The dried ligulate florets of Calendula officinalis Linné.

DESCRIPTION OF DRUG.—Florets about 12 mm. (1/2 in.) long, linear and strap-shaped, delicately veined in a longitudinal direction, yellow or orange-colored, 3-toothed above, the short, hairy tube inclosing the remnants of a filiform style.
terminating in two elongated branches; odor slight and somewhat heavy; taste somewhat bitter and faintly saline.

CONSTITUENTS.—Trace of volatile oil, a bitter principle, and a peculiar gummy principle, calendulin, C₆H₁₀O₅, regarded by some authorities as analogous to bassorin.

ACTION AND USES.—It has slight stimulant and diaphoretic properties, but is used principally in the form of tincture, as a vulnerary. Dose: 15 to 60 gr. (1 to 4 Gm.). *Tinctura Calendulae*, formerly official.

603. CARTHAMUS.—SAFFLOWER. AMERICAN SAFFRON. The florets of *Cartha'mus tincto'rius* Willdenow. (Official, 1820-1880.) Habitat: India, Levant, and Egypt; cultivated. Orange-red; tube long, slender, cylindrical with the two-cleft yellowish style protruding; strap divided into five narrow, lanceolate lobes; odor peculiar, aromatic; taste bitter. It contains two coloring principles, safflower-yellow, C₂₄H₃₀O₁₅ (24 to 30 per cent.), and a red principle, carthamin, C₁₄H₁₆O₇, or carthamic acid, to the latter of which its value as a dyestuff is due, and which, mixed with talc, forms rouge. Cathartic and diaphoretic in large doses of the warm infusion; in domestic practice used as a substitute for saffron to promote eruption in measles, scarlatina, etc. Dose: 8 to 15 gr. (0.5 to 1 Gm.).

604. HELIANTHUS ANNUUS* Linné.—Our common sunflower, the seeds of which are sometimes used as a diuretic and expectorant in pulmonary and laryngeal affections. Dose of fluidextract: 1 to 2 fl. dr. (4 to 8 mils). The fixed oil expressed from them has become an article of commerce, and the growing plants themselves enjoy the reputation of purifying malarial districts.
SECTION II.-ANIMAL DRUGS

605. CANTHARIS.—CANTHARIDES
SPANISH PLIES. BLISTER BEETLES

The beetle, Cantharis vesicatoria De Geer. (Fam.Coleoptera.) Thoroughly dried at a temperature not exceeding 40ºC. (104ºF.). Should not contain more than 10 per cent. moisture, and should contain not less than 0.6 per cent. of cantharidin.

HABITAT.—Southern and Central Europe and Northwestern Asia, feeding on plants of the families Oleaceae and Caprifoliaceae.

COLLECTION.—By shaking or beating the food-plants; the insects are then killed by heat (hot water) and rapidly dried.

DESCRIPTION.—A bronze-green beetle, with long (about 1 in. or 25 mm.) and narrow (1/4 to 1/3 in., about 7 mm.), subcylindrical body. The vertical, rather triangular, head is constricted behind so as to form a conspicuous neck. Odor strong and disagreeable, caused, in the living insect, by a secreted fluid containing uric acid, according to Maquetti. The crushing of the dried insect yields a grayish-brown powder containing green shining particles (the bits of the green wing-covers and the body-wall).

The dried insects or the powder is subject to the attacks of several Dermestid beetles and of several mites (Glyciphigus). The addition of a little chloroform, oil of turpentine, or naphthalene balls in a tightly closed vessel will help to keep out these cantharid-eating pests; or, if they have established themselves in the vessels, they may be killed by the use of carbon disulphide. (See Part III.)

OTHER SPECIES.—Besides Cantharis vesicatoria, several other beetles of the family Meloidæ, especially species of Mylabris, Epicauta, and Macrobasis, are used to obtain vesicatory agents, and give a larger percentage of cantharidin than the officially recognized insect.

Sayre's Materia Medica part VI - Page 14
**Epicauta vittata.**—The Old-fashioned Potato Beetle.¹ Found, often abundantly, in the United States; feeds largely on leaves of potato-plants. This insect was formerly official.

**Mylabris cichorii** Fab., and **M. phalerata** Pallas.—Chinese Blister Beetles. Habitat: Southern and Eastern Asia. Cichorii has its black wing-covers crossed by three broad orange-yellow bands; one band is terminal, thus rendering the apices of the wing-covers yellow.

**Mylabris bifasciata.**—The Two-striped Blister Beetle. Habitat: Northern Africa. The body is black, the wing-covers presenting two undulating narrow yellowish stripes. All these species of Mylabris yield about 1 per cent. of cantharidin.

**ADULTERATION.**—Spanish flies exhausted of their vesicating principle have been met with as substitutions. Powdered euphorbium has been spoken of as one of the adulterants, but adulteration is not common in this drug. The assay of the drug is accomplished by treating the powder with a mixture of benzine (2 vols.) and petroleum ether (1 vol.), acidulated with HCl; digesting the mixture; decanting the clear liquid, after cooling; evaporating and purifying the residue. For details, see U.S.P. IX.

**CONSTITUENTS.**—The chief constituents are: (1) cantharidin, the active principle, a fatty crystallizable body forming shiny, colorless plates, soluble in alcohol, ether, acetic ether, glacial acetic acid, chloroform, and oils-, volatilizable by heat (100°C., 212°F.) without decomposition, the vapor condensing in acicular crystals; (2) a volatile oil, giving the odor of cantharides, and said to have vesicatory properties; and (3) a green oil, the coloring principle, closely allied to chlorophyll.

¹ This “Potato Beetle” should not be confused with the well-known Colorado Potato Beetle (Doryphora decemlineata, Say), belonging to the family Crysomelidæ, a short, oval, yellow-and-black insect with ten longitudinal stripes on its wing-covers. This latter beetle probably possesses no vesicatory principle.
Preparation of Cantharidin.—Obtained by percolating the powder with chloroform, distilling off the liquid, and purifying the resulting crystals by washing them with CS₂ to remove fat. Colorless prisms; soluble in alcohol, ether, fats, etc.

Cantharidin is associated with certain alkalies and alkaline earths in the drug, and seems to exist partly in combination with them. The principle itself has been found to combine with salifiable bases like an acid.

ACTION AND USES.—Internally cantharides acts as a powerful irritant, and has a peculiar effect on the urinary and genital organs. Large doses produce violent strangury, attended with excruciating pain and a discharge of bloody urine. The principle use of cantharides is the application, externally, of the cerate as a blistering plaster. It is seldom used as a rubefacient, but as an epispastic or vesicant it is to be preferred of all substances of this class. Its blistering action terminates in a copious secretion of serum under the cuticle. Dose: 1/2 gr. (0.03 Gm.).

OFFICIAL PREPARATIONS.

- Ceratum Cantharidis (32 per cent.).
- Collodium Cantharidatum (60 per cent.).
- Tinctura Cantharidis (10 percent.) Dose: 1 to 5 drops (0.065 to 0.3 mil)

606. COCCUS.—COCHINEAL

COCHINEAL BUG. RED SCALE INSECT

The dried female insect, Coc'cus cac'ti Linné. (Fam. Coccidae), enclosing the young larvæ.

HABITAT.—Mexico, Central America, and Northern South America (originally), and Spain and Algiers (introduced); feeds on various cacti, especially upon Opuntia coccinilifera.

COLLECTION.—Only the females (wingless) are used; they are brushed off from the food-plant, and, if alive, are killed by heat (hot water or oven). The cochineal insect is cultivated on a large scale, and large quantities are annually exported from Mexico and Peru. Humboldt estimated that 800,000 pounds of coccus (each pound representing 70,000 insects) were annually imported into Europe.

DESCRIPTION.—The females (which alone are used) are small, wingless, oval, dull purplish-brown insects, convex above, about 4 mm.
(1/6 in.) long, covered, when alive, with a white cottony secretion. When the insects are dead and dry, this “cotton” rubs off, and the crushed insects yield a dark red powder; odor faint, taste slightly bitter.

VARIETIES.—These are: (1) silver, recognized by the presence of a soft, silvery white powder contained in the furrows and wrinkles; it appears to be a fatty substance as it melts on the application of heat, and the insects lose their silvery appearance. This variety is said to be the mature and fecundated insect. (2) Black cochineal, of a reddish-black color, nearly devoid of silvery powder, is supposed to be the female exhausted by propagation. (3) Granilla, an inferior kind composed of small and imperfect insects.

ADULTERATION.—The silvery gray variety with carbonate or sulphate of barium and lead; the black cochineal with graphite, ivory black, or manganese dioxide. “When completely incinerated, cochineal should leave not more than 5 per cent. of ash.”

CONSTITUENTS.—Cochineal contains principally a red coloring matter soluble in water, alcohol, or water of ammonia. This coloring matter is composed of carminic acid, \( C_{17}H_{18}O_{10} \) (?).

Carminic acid is obtained by treating the drug first with ether to remove fat, then with alcohol. Let alcoholic solution stand a few days, when carminic acid will deposit as a brownish-purple substance. A vermilion-red powder (carmine), soluble in water, alcohol, and alkalies, is obtained as a combination of this acid with alumina or occasionally with oxide of tin or with albumen. Commercial carmine is made by precipitating the decoction of cochineal with alum or cream of tartar.

MEDICAL PROPERTIES.—Cochineal has some reputation as an anodyne and antispasmodic, but it has not for many years been used as a remedial agent, its chief use being that of a coloring matter, and for this purpose it enters into the following preparation.

OFFICIAL PREPARATION.

**Tinctura Cardamomi Composita** (0.5 per cent.) Dose: 1 fl. dr. (4 mils).

*Sayre's Materia Medica part VI - Page 17*
607. **BLATTA.**—COCKROACH. *Periplaneta orientalis* Linné. Class, Insecta; order, Orthoptera; family, Blattidae.

HABITAT.—Asia (originally); now found in almost all parts of the world, in kitchens, laundries, and any warm, damp room. Nocturnal in habit, feeding omnivorously on vegetable and animal products.

DESCRIPTION.—A large (1 in. long), dark brown, short-winged, broad, flat, oval insect with long, thread-like antennae. Wings of the female rudimentary; of the male not reaching quite to the tip of the abdomen. Odor disagreeable.

OTHER SPECIES.—*Periplaneta americana* (American cockroach) is larger than *orientalis*, lighter brown in color, and has the wings well developed in both sexes. Numerous in houses about the water pipes; also abundant, often in green-houses, feeding injuriously on various plants.

Ectobia germanica (German cockroach or Croton Bug), very common in New England cities; smaller than the two preceding roaches (about ½ in. long), very light (yellowish-brown) in color, with two longitudinal dark stripes upon the prothorax.

Blatta gigantea, found in the West Indies, attains a length of 2 inches.

CONSTITUENTS.—Foetid oil, ammonia, trimethylamine, and a crystallizable principle, not diuretic, antihydropin.

ACTION AND USES.—Diuretic. Dose: 5 to 10 gr. (0.3 to 0.6 Gm.), in powder or tincture.

608. **HIRUDO.**—LEECH. *Sanguisuga medicinalis* Savigny. Class, Vermes; order, Annelida; family, Hirudinea.

HABITAT.—Northern and Central Europe chiefly, but found more or less in all parts of Europe, in ponds of fresh water.

DESCRIPTION.—The body, which varies in length from 75 to 150 mm. (3 to 6 in.), is smooth and round, tapering toward both ends, and made up of about 100 soft rings or folds. Both ends are provided with a flattened disk, the posterior being the larger, each of which is adapted to fix upon objects by suction. The mouth has three jaws, with a
double row of fine sharp teeth in each; the small anal opening is found on the under side of the last posterior wrinkle. Color of black greenish and striped longitudinally with numerous black spots; belly somewhat lighter green.

OTHER SPECIES.—Besides S. officinalis, which is next to S. medicinalis in importance and is similar in appearance (only there are no spots, and a black line extends along each side), may be mentioned Hirudoprovincialis, H. obscura, and H. interrupta, the species common in this country being known as H. decora. Leeches are said to be found in great abundance throughout India.

PRESERVATION.—The usual way of keeping leeches is to place them in clear water, in a shaded spot if possible, where the temperature will range from 10º to 20ºC. (50º to 68ºF.), care being taken to have a considerable quantity of charcoal, moss, and pebbles in the containing vessel.

USE.—For local blood-letting, a single leech being able to extract from 1 to 2 drachms of blood.

SPECIAL ANIMAL TISSUES AND SECRETIONS

609. SPONGIA.—SPONGE. Spongia officinalis Linné. Class, Porifera; order, Ceratospongiiæ.

HABITAT.—Red Sea, Mediterranean Sea, Atlantic Ocean, and other bodies of salt water, upon the rocky bottom.

COLLECTION.—The best sponges are secured by diving and cutting away their fastenings from the rocks; those of inferior quality are usually torn away with an instrument made for the purpose. The fresh sponges are exposed to the sun and washed, for the purpose of removing the animal matter with which they are filled.

DESCRIPTION.—A soft, elastic skeleton or framework of fibrous tissue surrounding the original animal matter, which, being removed, leaves a number of large and small cavities. The color is a light yellowish-brown.

VARIETIES.—The Turkey sponge is considered the best and belongs to the species Euspongia mollisima; Euspongia zimocca, from the coast of Greece, is harder and not so elastic. A still coarser sponge is Euspongia equina, collected along the north coast of Africa. The various sponges of the West Indies and Florida are different varieties of the three preceding species.

CONSTITUENTS.—A characteristic substance known as spongin, which yields leucin and glycocoll when treated with sulphuric acid, and when treated with KOH evolves ammonium hydrate. The ash is made up of various compounds of iodine, sodium, magnesium, calcium, etc.
USES.—Its power to absorb liquids and to expand at the same time makes sponge valuable as a surgical accessory in absorbing blood, dilating cavities, cleansing surfaces, etc., but great care should be exercised in its use, so that the same sponge may not be used more than once without being thoroughly washed in a dilute solution of carbolic acid; otherwise there is danger of contamination by infection, which is easily carried from one patient to another when the same sponge is used repeatedly. Burnt sponge is occasionally administered, on account of the iodides of sodium and potassium which it contains; in cases of goiter and scrofulous swellings.

610. **CORALLIUM.**—CORAL. *Oculina virginea* Lamarck. Class, Polypifera; order, Hexacorallia.

HABITAT.—Atlantic Ocean and Mediterranean Sea.

DESCRIPTION.—A hard, calcareous substance produced by coral polypi. The pieces are often branched, presenting a surface more or less porous and striate, and the interior is radiate or hollow.

VARIETIES.—Besides *Oculina virginea* there are several other species, among which may be mentioned *Corallium rubrum*, the red coral.

CONSTITUENTS.—Calcium carbonate 83 per cent., animal matter 7 to 8 per cent., magnesium carbonate 3 to 4 per cent., and ferric oxide 4.25 per cent. (in the red coral).

USES.—Antacid. Used in tooth powders. Dose: 5 to 15 gr. (0.3 to 1 Gm.).

611. **TESTA.**—OYSTER SHELL.

SOURCE.—*Ostreavirginiana* and *O. edulis*, which excrete a calcareous bivalved covering or shell, and inhabit the shallow coast water of the Atlantic and Indian Oceans.

DESCRIPTION.—External surface rough, inner surface smooth and white, the two toothless, hinged valves made up of imbricate, foliaceous layers, presenting, when closed, an irregularly rounded, oblong, or ovate form.

CONSTITUENTS.—Largely calcium carbonate, there being only 4 per cent. or less of animal matter present and a small percentage of silica, alumina, magnesia, and calcium phosphate and sulphate.

USES.—Antacid. The shell, to be used, should first be thoroughly purified and washed in boiling water. Dose: 5 to 15 gr. (0.3 to 1 Gm.).

612. **OS SEPIÆ.**—CUTTLEFISH BONE.

SOURCE.—*Sepia officinalis* is the species from which this calcareous bone is obtained; it inhabits the Atlantic Ocean and the Mediterranean Sea.
DESCRIPTION.—A white, flattish, oval-oblong bone about 100 mm. (4 in.) in length; exterior hard and smooth, interior porous and friable; inodorous; taste somewhat saline and earthy.

CONSTITUENTS.—Mostly calcium carbonate, with from 10 to 15 per cent. of animal matter and a very small percentage of sodium chloride, calcium phosphate, and magnesia.

USES.—An antacid. Extensively employed in the manufacture of tooth powders, and used to some extent as a polishing agent.

613. **CALCULI CANCRORUM**.—CRABS’ STONES.

SOURCE.—The stomach of the crab (Astac’us fluvia’ti’lis Fab. or Cancer astacus Linné), where they are formed by concretions. The crab is found in rivers throughout the North Temperate Zone.

DESCRIPTION.—The circular, plano-convex stones vary in size from 3 to 10 mm. (1/8 to 2/5 in.) in diameter, and are white and hard, changing in hot water to a rose-red; tasteless and inodorous. When treated with hydrochloric acid, they effervesce until nothing is left but a small plano-convex, cartilaginous mass.

SUBSTITUTIONS.—Artificial stones are sometimes manufactured, but can be distinguished from the true crabs’ stones by treating with HCl, when, if they are artificial, they leave little or no residue.

CONSTITUENTS.—Calcium carbonate 63 per cent., calcium phosphate 17 per cent., animal matter 12 to 15 per cent., and small portions of phosphate of magnesium and sodium salts.

USES.—Antacid.

614. **ICHTHYOCOLLA**.—ISINGLASS. The swimming-bladder or sound of the Sturgeon, a fish found in the Black and Caspian Seas and their tributary streams. The swimming-bladders of other fish are also employed for this purpose, but the isinglass from the Russian species, Acipenser huso, A. guldenstadtii, A. ruthenus, and A. stellatus, is considered the finest and purest. The inner layer of the swimming-bladder is separated from the outer, and after being washed is thoroughly dried. The sheets of commercial isinglass are prepared in various forms—leaf isinglass (single sheets), book isinglass (several sheets folded together), and staple isinglass. In appearance it resembles horn, is of a yellowish-white color, semi-transparent and iridescent. The substance is tough, tearing with difficulty even in the direction of the fibers, but dissolves completely in hot water, forming a transparent jelly on cooling in a solution of 24 parts of the same. Constituents: Gelatin (98 per cent., in the best Russian variety) and from 2 to 30 per cent. of insoluble membrane, the ash amounting to only about 0.5 per cent. Nutritive, easily digested. Emollient and protective externally.
AMBRA GRISEA.—AMBERGRIS.

SOURCE.—Physe’ter macroceph’alus, a species of whale inhabiting the Indian Ocean and the southern part of the Pacific Ocean, excretes a substance from the intestines which is found floating on the surface of the water; this is known as ambergris.

DESCRIPTION.—Waxy, grayish-brown, with streaks and dots; odor peculiar, taste slight; soluble in hot alcohol, ether, fats, and volatile oils.

CONSTITUENTS.—Ambrein (brilliant white needles precipitated from alcoholic solution) 85 per cent., a balsamic extractive, and a very small proportion of ash. On account of its high price adulterations of and substitutions for ambergris are common, but the genuine article is easily distinguished by means of its complete solubility in hot alcohol, and evaporation without evolving acrid vapor.

Preparation of Ambrien.—Obtained by crystallizing from hot alcoholic solution of ambergris; it forms white, shining, tasteless, and inodorous needles which fuse near 350ºC.

USES.—As a perfume it is highly prized. It possesses very uncertain medical properties and is very rarely administered as a remedial agent.

OLEUM MORRHUÆ.—COD-LIVER OIL. A fixed oil obtained from the fresh livers of Ga’ dus mor’ rhua Linné, or of other species of Gadus (class, Pisces; order, teleostei; family, Gadidæ). For tests see U.S.P. Description: A pale yellow thin oily liquid. Peculiar, rancid odor; bland, fishy taste. Specific gravity at 15ºC. (59ºF.) 0.922 to 0.927. Should be kept in dry, well-stoppered bottles. Constituents: Chiefly olein, palmitin, and stearin. The oil also contains dissolved in it minute quantities of the halogen elements, iodine, bromine, and chlorine, with phosphorus and sulphur. A peculiar substance named gaduin is also claimed to have been found. A crystalline substance, morrhuol, a compound body containing phosphorus, iodine, and bromine, is also said to be among the “active principles” of cod-liver oil. Action and Uses: A nutritive agent, generally of easy assimilation. It has long been used as a stimulant and alterative in rheumatic and strumous diseases. In pulmonary consumption it has for a long time enjoyed a great reputation. Dose: a tablespoonful (1/2 fl. oz.) three or four times a day.

CETACEUM.—SPERMACETI

A peculiar concrete, fatty substance obtained from the head of the sperm whale, Physe’ter macrocep ha’lus Linné (class, Mammalia; order, Cetacea).

DESCRIPTION.—A pearly-white, somewhat translucent, waxy mass, but of a somewhat granular texture, fusing at about 45ºC, (113ºF.). Odor
faint and bland, taste mild. Insoluble in water, soluble in 50 parts of boiling alcohol; also in ether, chloroform, and carbon-disulphide. It becomes yellow and rancid on exposure to air.

CONSTITUENTS.—Mainly cetin (cetyl palmitate, C₁₀H₃₃(C₁₆H₃₁O₂), with small amounts of other fatty compounds.

USES.—Mainly as a base for cerates and ointments.

618. MEL.—HONEY

HONEY

A saccharine secretion deposited in the honeycomb by the bee, *A'pis mellif'era* Linné (Pam. Apidæ).

USES.—Mainly as a vehicle for remedial agents.

The honeycomb, from which the honey is drained, is the source of the two pharmaceutical products:

618a. CERA FLAVA.—YELLOW WAX. BEESWAX. Obtained by slicing the honeycomb, draining it thoroughly, melting the residue after impurities have subsided, and allowing the melted liquid to cool. A yellowish or brownish-yellow solid, having an odor suggesting honey, and a rather agreeable taste. It melts at about 63ºC, (145.4ºF.).

618b. CERA ALBA.—WHITE WAX. BLEACHED WAX. The yellow wax is bleached by exposing an extended surface to the light and atmospheric influence. This is done in various ways. Bleaching may be accomplished by chemical means, such as by the use of chlorine gas, etc. A white, shining, inodorous, insipid solid, fusing at about 65ºC. (149ºF.). For Tests see U.S.P.

USES.—As an ingredient in cerates, ointments, plasters, etc.

619. OVUM.—Gallinaceum, N. F. Fresh hen's egg.

SOURCE.—The egg of the common domesticated hen (probably from India originally) is well known as an article of food throughout the country.

DESCRIPTION.—A thin, calcareous shell incloses an albuminous substance known as white of egg, which in turn incloses the vitellus or yolk.
CONSTITUENTS.—The three parts of an egg are entirely separate and distinctive in composition.

(a) Testa Ovi, Egg-shell.—Almost pure calcium carbonate (90 to 97 per cent.), the remainder being made up of magnesium and calcium phosphates, together with about equal quantities of organic matter.

(b) Albumen Ovi, White of Egg.—Made up mostly of a solution of albumen and water (albumen 15 per cent., water about 85 per cent.), with slight traces of fat and sugar, as well as KCl and NaCl, which are the chief components of the ash. Ovi Albumen Recens, N.F. Fresh egg albumen.

(c) Vitellus, U.S.P. 1890.—Egg Yolk, or Yelk. Compounded of water (about 52 per cent.), fat (30 per cent.), vitellin (16 per cent.), and inorganic salts (1.5 per cent.), such as chloride of sodium, sulphates and phosphates of magnesium, etc., together with coloring matter and traces of lactic acid and sugar. Ovi Vitellum Recens, N.F. Fresh egg yolk.

ACTION AND USES.—Shell sometimes used as antacid. The white, besides its nutriment, is valuable as an antidote when corrosive sublimate, sulphate of copper, or other metallic poisons have been taken into the stomach. The yolk is even more nutritious than the white, having a greater amount of digestible solids. It is used in preparing emulsions of oils and applied as a dressing for burns.

620. MOSCHUS.—MUSK

The dried secretion from the preputial follicles of Moschus moschiferus Linné (Fam. Moschidae).

SOURCE.—Musk is obtained from a small bag or sac attached to the prepuce of the male Musk deer, Moschus moschiferus, a species of hornless deer found in Central Asia from Thibet to China. The musk-sac is somewhat oval and about 50 mm. (2 in.) in diameter, containing in the mucous lining a number of delicate glands which secrete the musk.

DESCRIPTION.—A granular substance of a brownish or reddish-black color, having a very strong, peculiar, and penetrating odor. The granules are irregular in size, and have a smooth, oil appearance and a bitter taste. The color of the fresh article is considerably lighter than that which has been dried and prepared for the market, although the commercial product is estimated to contain about 10 per cent. of moisture. The dried musk is contained in the original sac, one-half of
which is smooth and the other covered with hairs arranged concentrically around two orifices. The quantity of musk in each sac amounts to about 160 grains. Not more than one-tenth of this musk is dissolved by strong alcohol, with which it forms a light yellowish-brown tincture, while as much as one-half of it can be dissolved in water, forming with it a dark brown solution having a very strong odor. Should not contain more than 15 per cent. of moisture nor 8 per cent. of ash.

VARIETIES.—Besides the Chinese or Thibetan musk, which is of the most excellent quality, there is also a Siberian musk, the quality of which is inferior. There is also an artificial musk which comes more properly under the head of adulterations. The Siberian or Russian variety is generally quite easily distinguished, the containing sac being more elongated than that of the Chinese variety, and the hair thinner and lighter.

ADULTERATIONS.—An artificial musk is manufactured by the Chinese and is made up chiefly of a mixture of blood and ammonia to which a small quantity of real musk is added, the whole being inclosed in a piece of the skin of the musk ox. Resin, lead, and other substances are also resorted to in preparing adulterations.

CONSTITUENTS.—Free ammonia, fat, albumen, an acid, wax, and gelatinous principles can be easily separated, but it has been impossible to separate the odoriferous principle. The gray ash left after burning the pure musk constitutes about 8 per cent. of the drug. The odor of musk is destroyed or greatly modified by the action of several substances, such as camphor, ergot, hydrocyanic acid, etc.

ACTION AND USES.—Antispasmodic and diffusible stimulant, together with more or less aphrodisiac action. Its powerful and lasting odor makes it valuable as a perfume, either alone or in combination with other substances. Dose: 1 to 10 gr. (0.065 to 0.6 Gm.), administered in the form of powder, pills, or enema, the powder being generally taken with milk.
621. FEL BOVIS.—OX GALL

OX GALL

The fresh bile of Bos taurus Linné (Fam. Bovidæ).

DESCRIPTION.—The fresh bile of the ox is a brownish or dark green, viscid liquid, with a characteristic, unpleasant odor, and a nauseous, bitter taste. It is neutral or faintly alkaline. Pettenkofer's test for this liquid is as follows: Two drops in 10 mils of water, when treated first with a drop of freshly prepared solution of one part of sugar and four parts of water, and afterward with sulphuric acid cautiously added until the precipitate first formed is redissolved, gradually acquires a brownish-red color, changing successively to carmine, purple, and violet.

PREPARATION.—Fel Bovis Purificatum. The method by which this medicinal preparation of the crude ox-gall is made, according to the U. S. Pharmacopœia, is as follows: Fresh ox-gall 300 mils; alcohol 100 mils. Evaporate ox-gall in tared porcelain capsule on waterbath to 100 Gm.; add to it the alcohol. When precipitation has occurred and the solution cleared, the clear liquid is decanted, the remainder filtered, and the filtrate evaporated to a pilular consistence.

Purified ox-gall is a yellowish-green, soft solid, having a peculiar odor and a sweetish, bitter taste.

Extractum Fellis Bovis U.S.P. IX.

ACTION AND USES.—The purified ox-gall only is used in medicine. It is tonic and laxative, at one time much used to increase the secretion of bile. Dose: 3 to 10 gr. (0.2 to 0.6 Gm.).

622. SANGUIS.—BLOOD.

SOURCE.—The ox (Bos taurus Linné) furnishes this liquid from the arterial circulation of the vascular system.

DESCRIPTION.—A red, opaque fluid, slightly heavier than water (sp. gr. 1.05), containing corpuscles in suspension, and coagulating on exposure.
CONSTITUENTS.—Chiefly water (78 per cent.), with albumen 7 per cent., salts 9 per cent., fibrin 4 per cent., and corpuscles and other constituents 13 per cent. Haemoglobin is a peculiar coloring matter made up of globulin and haematin, which gives blood its red appearance.

MEDICAL PROPERTIES.—Desiccated blood has enjoyed some reputation as a nutritive or restorative, the dose being about 15 gr. (1 Gm.), but it has not been very generally adopted as an agent among therapeutists for treatment of debilitated conditions.

623. LAC. VACCINUM, Cow's milk, N.F.

SOURCE.—The mammary glands of the cow (Bos taurus), the well-known domestic animal.

DESCRIPTION.—A white, opaque liquid or emulsion, made up of butter and casein, and having a pleasant taste and slight odor; specific gravity about 1.030. When allowed to stand for a few hours, the oily globules rise to the surface on account of their lower specific gravity. Under the microscope these globules are seen to be separate, and each surrounded by an albuminous envelope, but when a caustic alkali is added, this envelope is destroyed, so that the globules are released and accumulate as pure butter. When exposed for a considerable time in a warm place, milk changes from sweet to sour on account of the development of an acid by chemical action between the constituents.

CONSTITUENTS.—A large percentage (about 87 per cent.) of milk is represented by water, 4 per cent. by butter, 5 per cent. by sugar and soluble salts, and only about 3.6 per cent. by casein and insoluble salts.

Butter is composed of olein (about 30 per cent.), palmitin, and stearin (68 per cent.), and about 2 per cent. of glycerides of butyric and other acids.

Casein, which is soluble in a solution of the alkalies, is a modification of albumen, and is precipitated from solution by the action of rennet or acetic acid.

Lactic acid (Acidum Lacticum, U.S.), which is developed by the action of heat, is said not to be a normal constituent of milk, but is always present in sour milk. Syrupus Calcii Lactophosphatis employs this acid. Dose: 8 Mils (2 fl. dr.).

PREPARATION: LAC FERMENTATUM, N.F.

623a. SACCHARUM LACTIS.—SUGAR OF MILK. LACTOSE. Forms about 5 per cent. of milk and is obtained from the whey by evaporation and recrystallization. A hard, somewhat gritty, slightly sweet powder, almost inodorous. Soluble in about six parts of water. For Tests see U.S.P. It has been recommended as a dietetic in wasting diseases, but in pharmacy is merely a diluent for triturations of various kinds.
ACTION AND USES.—Milk is nutritious, and its value as an article of diet is well known. In addition to this use, milk may be satisfactorily employed as a vehicle for the administration of certain remedies having an unpleasant taste.

624. **OS.-BONE.**

SOURCE.—The skeleton of vertebrate animals.

CONSTITUENTS.—Calcium phosphate 40 to 67 per cent., which includes a small percentage of calcium carbonate; phosphates of magnesium and other salts are also present. With the salts are also found organic substances yielding gelatine on boiling with water. The basic substance of the bony structure contains two chief constituents, namely, an organic substance, ossein, and the so-called bone earth inclosed in or combined with it. Ossein is generally considered identical with collagin of the connective tissue.

Preparation of Ossein: that portion of bone that is left undissolved after treatment with HCl.

USES.—For preparing bone-black, animal charcoal, and phosphates.

625. **GELATINUM (U.S.).—GELATIN.**

SOURCE.—Bone, cartilage, skin, tendons, and ligaments; a boiling-hot solution of these, resulting in a jelly when cooled, is dried in the air.

DESCRIPTION.—Thin, transparent sheets or porous, opaque layers or shreds, amorphous, swelling in water without dissolving, dissolving in warm water, forming a sticky liquid which solidifies on cooling. The solution is lævogyrate. Solutions of gelatin on boiling are not precipitated either by mineral acids, acetic acid, alum, lead acetate, or mineral salts in general, but precipitated by potassium ferrocyanide, tannic acid, mercuric chloride in the presence of HCl and NaCl, and by alcohol, especially when neutral salts are present. Its solution containing KCr207 yields an insoluble compound on exposure to light.

Gelatinoids.—To this group belong a number of substances occurring in bones, skins, horns, etc., having generally the property of forming a jelly with water. The organic matter in bones, usually called ossein, contains, besides albuminous substances, the two gelatinoids, collagin and gelatin, a pure mixture of which forms common glue. Chondrin resembles gelatin; it is obtained from cartilages of the ribs and non-ossifying cartilages; its aqueous solution is precipitated by alum, lead acetate, ferric salts, acetic acid, and a small quantity of mineral acid, but not precipitated by tannin or mercuric chloride. Properties: Emollient, nutritive, and protective.
626. SEVUM.—SUET

MUTTON SUET

The internal fat of the abdomen of *Ovis aries* (Fam. Bovidæ), purified by melting and straining. Suet should be kept in well-closed vessels impervious to fat. It should not be used after it has become rancid.

DESCRIPTION.—White, unctuous, smooth solid, melting at about 48°C. (113°F.). Sevum Præparatum (U.S.) is identical with suet as above described.

CONSTITUENTS.—Stearin, palmitin, and olein, with a preponderance of the first mentioned.

USES.—Lenitive, as an external application and as a base for unctuous preparations.

627. OLEUM BUBULUM.—NEAT'S-FOOT OIL. From the fatty tissue of the feet of the ox, previously deprived of hoofs, obtained by boiling in water and skimming off the fat, which is subsequently strained and pressed. At ordinary temperatures this is a semifluid, oleaginous fat, of a peculiar odor.

CONSTITUENTS.—Mainly olein, with solid fats. Used externally.

628. ADEPS.—LARD

LARD

The prepared internal fat of the abdomen of *Sus scrofa* Linné (class, Mammalia; order, Pachydermata), purified by washing with water, melting, and straining. Lard should be kept in well-closed vessels impervious to fat, and in a cool place.

DESCRIPTION.—A white unctuous solid with faint odor and bland taste. Insoluble in water. Soluble in chloroform, carbon bisulphide and benzine. Specific gravity at 15°C. (59°F.) about 0.932.

CONSTITUENTS.—Olein, stearin, and palmitin; of the first mentioned it consists of about 50 to 60 per cent.

USES.—Emollient, and a’s a base for ointments and cerates.

628a. OLEUM ADIPIS.—LARD OIL. U.S. VIII. A pale yellowish or colorless fixed oil having a slight odor and taste. It is produced by
exposing lard, at a low temperature, to strong pressure.

CONSTITUENTS.—Olein, with palmitin and stearin. Used externally.

629. PEPSINUM.—PEPSIN

PEPSIN

A mixture containing a proteolytic ferment or enzyme obtained from the glandular layer of fresh stomachs of healthy pigs, and capable of digesting not less than 3000 times its own weight of freshly coagulated and disintegrated egg albumen. See details of test U.S.P. IX.

SOURCE.—Pepsin is prepared from the stomach of the ox (Bos taurus), the sheep (Ovis aries), or the hog (Sus scrofa), the mucous membrane being the part used. Several methods have been employed for its extraction. The ordinary methods of manufacture may be briefly stated as follows:

(1) The extraneous matter is first removed from the inner surface of the stomach by washing, and the mucous membrane scraped off with a blunt instrument; the pulp thus obtained is placed on glass or porcelain and dried and finally reduced to a powder. This forms a rather poor quality, owing to the presence of mucus and inert matter.

(2) The finely chopped mucous coat is macerated in dilute hydrochloric acid (about 2 per cent.), and to the filtered solution common salt is added; the floating precipitate which results is carefully washed, then dried, and the dried residue mixed with sugar of milk until the strength of the article is such that 1 grain will dissolve 3000 grains of coagulated albumen, the strength directed by the United States Pharmacopoeia.

(3) A scale pepsin is made by digesting the mucous lining at the temperature of about 100ºC. with about 0.2 per cent. of HCl (or water acidulated with other acids to the same degree of acidity) until the membrane is completely or nearly all dissolved. The solution is neutralized by a suitable alkali and the filtered product, after reduction by evaporation at a low temperature (sometimes in vacuo) to a syrupy consistence, is spread on plates of glass and dried in a current of warm air, care being taken not to allow the temperature to exceed 40ºC. (104ºF.). The dried, transparent film is then scraped from the plates and
broken into more or less fine lamellæ.

DESCRIPTION.—A yellowish-white amorphous powder or thin, pale yellowish, somewhat transparent scales, with faint odor and slight saline or acidulous taste, but no indication of decomposition; should not be hygroscopic. It invariably contains some rennin; its solutions, therefore, will coagulate milk. Incompatible with alkalies, alcohol, and heat renders it inert.

ACTION AND USES.—Pepsin has a digestive action upon the food taken into the stomach, and is employed as an artificial agent to assist digestion when there is functional derangement of the stomach. Dose: 10 gr. (0.6 Gm.).

630. PANCREATINUM.—PANCREATIN

A mixture of enzymes (Amylopsin, Trypsin, Steapsin) existing in the pancreas of warm-blooded animals capable of converting at least twenty-five times its weight of starch into sugars.

SOURCE.—Prepared from the pancreas of the hog or ox, by mixing finely chopped pancreas with half its weight of cold water and straining the liquid by pressure through cheese-cloth or flannel. To the filtrate, alcohol is added (about one volume), and the resulting precipitate collected, purified, and dried.

DESCRIPTION.—Yellowish-white amorphous powder with but slight odor and meat-like taste; slowly soluble in water, insoluble in alcohol. See U.S.P.

TEST.—Pancreatín acts best in alkaline medium (is injured by acids). If there be added to 4 fl. oz. of tepid water contained in a suitable flask or bottle, first 5 gr. of pancreatin, 20 gr. of bicarbonate of sodium, and afterward one pint of fresh cow's milk previously heated to 38ºC. (100.4ºF.), and if this mixture be maintained at the same temperature for thirty minutes, the milk should be so completely peptonized that, upon adding to a small portion of it transferred to a test-tube a slight excess of nitric acid, coagulation should not occur. This test we have found quite satisfactory as a convenient one. An alternate method of assay is based on the property of an aqueous solution of the principle to digest (or liquefy) starch paste. The U.S.P. IX furnishes the two
tests—one indicating its power in peptonizing milk, the other its power in digesting starch. A limit of fat is adopted as one of the standards: Two grammes of pancreatin should not yield to ether more than 0.6 Gm. of fat.

ACTION AND USES.—Used as a digestive agent, especially for “peptonizing” milk. Dose: 10 gr. (0.6 Gm.).

RENNINUM.—Rennin, N.F. Partially purified, milk-curdling enzyme from the calf's stomach, capable of coagulating not less than 12,500 times its weight of fresh cow's milk. For assay see N.F.

631. ADEPS LANÆ HYDROSUS.—LANOLIN

HYDROUS WOOL-FAT

The purified fat of the wool of sheep, Ovis aries Linné (Fam. Bovidæ), mixed with not more than 30 per cent. of water. For Tests see U.S.P.


CONSTITUENTS.—Cholesterin, palmitin, olein, the first mentioned being largely represented.

USES.—As an inunction and vehicle for substances the medicinal action of which can be obtained by local application. It is employed in several official ointments.

631a. HYDROCARBON FATS AND OILS.—(Petrolatum, etc.).

DESCRIPTION, SOURCE, ETC.—As a most valuable addition to the list of ointment bases and oleaginous liquids there has been officially recognized: Petrolatum album (White Petrolatum); Petrolatum Liquidum (oil); Petrolatum Molle (soft Petrolatum); and Petrolatum Spissum (Hard Petrolatum). These are mixtures of the harder and softer members of the paraffin series of hydrocarbons, having different melting and congealing points, etc. Hard paraffin consists chiefly of hydrocarbons ranging from C₂₀H₄₂ to C₃₀H₆₂; soft paraffin consists chiefly of C₁₅H₃₂ to C₂₀H₄₂; liquid consists chiefly of heptane, C₇H₁₆, and octane, C₈H₁₈.

USE.—As a vehicle for medicinal substances applied locally. As such it is much less permeable through the skin than other fats.
HYDRACEUM—A plaster mass of a blackish-brown color, occasionally used medicinally as a stimulant and antispasmodic. When warmed, it emits the odor of castor. It is an animal excretion found in Africa.

CASTOREUM.—CASTOR.

SOURCE.—The preputial follicles of both sexes of Castor fiber Linné. These follicles are not perceptible until the outer skin is removed, when they are seen to lie between the cloaca and pubic arch of the animal. This species of animals is commonly known as the beaver, and is found more or less throughout the Temperate and North Temperate Zones.

DESCRIPTION.—The dry, resinous, brownish contents of the fig-shaped sacs or follicles have a strong and peculiar odor, an acrid, nauseous taste, and are soluble in alcohol and ether. An aqueous decoction of castor is of a light yellowish-brown color which becomes turbid on cooling, and changes to a dark color when ferric chloride is added.

VARIETIES.—American or Canadian, and Russian or Siberian Castor. The Russian variety differs from the American in the size of the inclosing follicles; in the former the size varies from 2½ oz. to 8 oz. (75 to 240 Gm.) in weight, and in the latter from 1 to 4 oz. (30 to 120 Gm.). There is also a difference in the composition of the product from the different varieties, the American probably containing a larger percentage of resin.

ADULTERATIONS.—Earthy matters, as well as resin and blood, are sometimes used for this purpose, but not frequently. The product from diseased animals is also met with; this often contains as much as 50 per cent. of inert material and is of a brownish-gray color.

CONSTITUENTS.—A bitter resinous substance 14 to 58 per cent., 1 to 2 per cent. of volatile oil containing carbolic acid, a small quantity of castorin (a colorless, odorless and tasteless, crystalline, non-saponifiable fat, soluble in ether and boiling alcohol), together with salicin, cholesterin, and about 3.5 per cent. ash. The resin is dark brown, slightly acid, soluble in alcohol but not in ether. The volatile oil contains the odoriferous principle and is generally colorless, having an acrid, bitter taste.

ACTION AND USES.—Castor enjoys some reputation as a stimulant, antispasmodic, and emmenagogue, and is employed in cases of hysteria, chorea, and epilepsy, associated with sexual disorders. On account of its disagreeable taste it is best administered in the form of a pill.

DOSE.—5 to 10 gr. (0.3 to 0.6 Gm.) in the form of a pill; 1 to 4 fl. dr. (4 to 15 mils) of the tincture.

CIVETTA.—CIVET.

SOURCE.—The glandular pouch between the genitals, and anus of the male and
female animals belonging to the two species *Viver'ra zibe'tha* Schreber, and *V. civetta* Schreber, the first of which is found in Southern Asia and the other in Africa.

DESCRIPTION.—The secretion, when fresh, is yellowish, becoming brown with age, soluble in hot absolute alcohol, partly soluble in ether, and insoluble in water; odor musk-like; taste acrid and nauseous.

ADULTERATIONS.—Butter or lard is not infrequently used as an adulterant of the commercial article.

CONSTITUENTS.—Resinous and coloring matters are the chief components, together with volatile oil and fat.

ACTION AND USES.—The manufacture of perfumery is the principal use of civet, but it is also sometimes administered as a stimulant and antispasmodic in doses of 5 to 15 gr. (0.3 to 1 Gm.). As a perfume it is superior to musk, as the odors of various kinds of flowers can be successfully imitated with it.
PART III

INSECTS INJURIOUS TO DRUGS

The introduction of this brief appended section on insects injurious to drugs into a text-book of materia medica, while an innovation, seems desirable to the author of the text-book on the ground of the importance of the subject. It is a fact that stored drugs are attacked by a considerable number of insects, and that a varying amount of loss from this cause is sustained by practically every druggist, wholesale and retail, in the land. If, by the acquiring of a little knowledge of the appearance and habits of these pests, and by the exertion required in a little preventive or remedial care, this loss can be lessened, the introduction of this section, which attempts to furnish the information necessary for the little knowledge and the little care, will be justified.

The necessary entomological knowledge of the pharmacist who would make some show of resistance to the insect enemies of his drugs may be limited to an acquaintanceship with these insect enemies, and a knowledge of the means of fighting them. As a basis for this acquaintanceship, however, it is necessary to glance hastily at the great class of insects in general. More numerous in species and individuals than all other animals combined, the insects are conveniently divided into several great groups or orders. All the butterflies and moths, whose wings are covered with fine scales, and who obtain their food by sucking the nectar from flowers, constitute one order; the beetles, with their horny fore-wings and their powerful jaws for biting, compose another order; the two-winged flies, of which the familiar house-fly is an example, constitute a third order; the ants, bees, and wasps, and some other highly intelligent insects are grouped together in a fourth order; the true bugs, as the chinchbug and squashbug, with their sucking beaks, are comprised in a fifth order; the grasshoppers, crickets, cockroaches, and katydids compose a sixth order; and, finally, the gauzy-winged dragon-flies, the short-lived May-flies, and the wonderful white ants constitute a seventh order. But a simpler division of insects into two great groups is that often made, for convenience' sake, especially by the economic entomologist; namely, a division made according to mouth parts, all insects in the adult stage having mouth parts fitted for biting or mouth parts fitted for sucking. It is evident at once that the pharmacist will be especially interested in the biting insects, the ones which can attack roots and leaves, and all dry preparations. There will be little opportunity for the sucking insects to
injure the pharmacist's stores. The insects may be divided according to this distinction as follows: The orders containing the beetles, the cockroaches, the dragon-flies, etc., compose the group of biting insects; the orders containing the true bugs, the butterflies and moths, and the flies, compose the group of sucking insects; while the order of the ants, bees, and wasps, and the order of mites (which are not true six-footed insects, but are closely related to them) may be said to compose a third group, in which the mouth parts are arranged for both biting and sucking, or piercing and sucking.

But we can not thus dismiss certain of the sucking insects from our pharmaco-entomological consideration; for with wonderful adaptiveness, nature has arranged that the young of certain sucking insects shall be provided with jaws for biting. The common worm-like caterpillars, which are the larval forms, or young, of butterflies and moths, are familiar to all; most children know that the strong-jawed, foliage-eating “worm,” now feeding so voraciously on the green leaves of plant or tree, will in time change into some beautiful four-winged butterfly or moth, incapable of injuring a green leaf, and taking its food only in dainty sips, by means of its sucking tubular mouth parts, from some bright flower. And most housewives know that the dreaded clothes-moth—little, brown, delicate flutterer—is, in its moth or winged stage, harmless to furs or woolens, but that the dreaded little white grub, with its sharp jaws and voracious appetite, which really does the damage, is only the young of the innocent-looking moth, and that the moth, after all, is not so innocent.

So, then, it behooves the pharmacist to keep an eye on not only those insects which all their lives are truly biting insects, but also on those insects, as the moths, which, while harmless as adults, yet in their young stages, with strong biting mouth parts, appear as ravaging caterpillars.

In setting out to fight an insect pest, the economic entomologist asks first, “What is it? Is it a beetle, or a fly, or a moth?” This question answered, he already knows much about it; whether, for example, it is a biting or a sucking insect; he knows in a general way what sort of damage it does and how it does it, and he knows, too, in a general way, what remedies are most likely to be effective in fighting it. But it is always better and usually necessary to know the exact life history of the particular pest he must fight; he must discover where and when its eggs are laid, how long it remains in the larval or grub stage, what are its
times and places of feeding, and what are its favorite articles of diet. From this life history he can decide on the character of the remedy to be applied, and when and where the remedy can best be used. Therefore the pharmacist may wisely turn to his jars and boxes, his store-rooms and laboratories, and try to discover what manner and number of insects he is to array himself against.

Referring to some of the more common and destructive pests attacking stored drugs, the mites (order, Acarina) may first be noted. The mites, commonly enough represented and known in the case of the familiar flour or cheese mite, are minute, rounded-oval, eight-legged insects, with the mouth parts arranged to form a piercing beak. The body is not divided into head, thorax, and abdomen, as is the case with other insects, but all these parts are coalesced or merged into a single mass. While many mites suck the blood from animals or the juices from plants, many others feed on "dry food." Among these are the flour and cheese mites, and sugar mites with soft, smooth, whitish body (see Fig. 263), and belonging to the genera Tyroglyphus, Rhizoglyphus, and Glyciphagus. Many species of these genera of mites, besides being found in sugars, meals, and other vegetable products in the store-room, attack dried animal remains, cantharides suffering severely from the ravages of several species of Glyciphagus (see Fig. 264). The presence of the mites in the cantharides jars is indicated by much powder and broken bits of the beetles gathering on the bottom of the jars. In this mass of powder and fragments can be seen with the naked eye many small, moving, whitish specks, the mites. These specks, examined under the microscope, will reveal the characteristic shape and appearance of the mites.
The most abundant pest in the pharmacal store-rooms appears to be a small, brown beetle, *Sitodrepa panicea*, belonging to the family Ptinidæ, a family whose members, in both larval and adult stages, feed on dead, dry vegetable and animal matter. This family comprises a number of small beetles, rarely exceeding a quarter of an inch in length, and usually brownish in color. A conspicuous and distinctive character is the hoodlike prothorax, the head being so bent or drawn back under it as to be almost concealed (see b, Fig. 265). *Sitodrepa panicea*, the especially abundant species of this family, is from 2 to 3 mm. long, with a brown, subcylindrical body. It is almost entirely covered with many fine, short, yellowish hairs, which, on the upper surface of the body, are arranged in parallel longitudinal lines; the upper surface of the body (strictly, only the wing-covers) is finely striated (see a, Fig. 265). The head is almost concealed by the thorax, the front margin of the thorax reaching to the eyes. The head is also bent strongly downward. The young, or larva, of this beetle is a small white grub with three pairs of legs, and strong, dark brown jaws. The grub when lying at rest usually assumes a semicircular position (see c, Fig. 265). They feed voraciously on the drug, grow rapidly, and, after two or three weeks, pupate, and soon change into the perfect beetle. The beetle also feeds upon the drug by means of

---

*Fig. 265.* — *Sitodrepa panicea* Linné. The common drug-eating insect. *a*, Dorsal view of adult beetle. *b*, Side view of adult beetle. *c*, Larva.—*(Smith.)*

*Fig. 266.* — Ginger root attacked by *Sitodrepa panicea* Linné.—*(Original.)*

---

*Sayre’s Materia Medica part VI - Page 38*
strong biting jaws, and the females soon lay eggs, from which another
generation of larvæ, or grubs, hatch. The whole life of the insect is thus
passed in the can or jar containing the drug. The presence of the pest is
shown by the collecting of a considerable amount of powder on the
bottom of the can or jar (if the drug is a root, stem, or leaf), and by the
presence in the drug of many small holes eaten by the insects (see Fig.
266). Often the little brown beetles may be seen crawling about in the
jar. If the drug is a powder, this is the easiest means of detecting their
presence. Sitodrepa panicea is almost omnivorous in the pharmacal
store-room. In the store-rooms of the department of pharmacy, University of Kansas, Sitodrepa panicea has been found feeding on
such drugs as the following: Columbo, aconite, mustard, althæa,
belladonna, poke root, ginseng, angelica, etc.

Still other species of the family Ptinidæ feed on drugs: Lasioderma
serricorne, a small brown beetle very like Sitodrepa panicea, but more
robust, and with the wing-covers smooth and not striated, although covered with
fine hairs as in Sitodrepa, is not uncommon. The larva or grub is like the
grub of Sitodrepa, and the habits are about the same. I have found Lasioderma
serricorne attacking powdered ergot, and Prof. J. B. Smith, entomologist of Rutgers
College, has found it attacking belladonna root. Plinus brunneus, another species of
the family, which I have found attacking musk root, powdered senna, and powdered
jaborandi leaves, differs considerably in appearance from the other two members
of the family just referred to. It is slightly larger, being about 4 mm. long, and it has
long, slender antennæ or feelers which project forward from the head (see Fig.
267). The antennæ of Sitrodrepa and Lasioderma are usually bent back upon
the body. The body of Ptinus is not subcylindrical, but tapers toward the
head, the head itself being much narrower than the body. Bostrichus
dactilliperda, another member of the family Ptinidæ, attacks sweet
almonds.

Another family of beetles which includes several drug-attacking species
is the Dermestidæ. To this family belongs the common buffalo bug (Anthrenus scrophulariaceae) of the house. The Dermestidæ comprise a number of beetles, mostly small, which feed on skins, furs, various dried animal substances, and, to some extent, on dried vegetable substances. Anthrenus varius, which I have found in jars of powdered cramp bark and fenugreek, is small, rounded-oval, with transverse black, white, and reddish-brown waved stripes (see a, Fig. 268). The grub differs from the larvæ of the Ptinidæ in bearing many long, bristly hairs (See c, Fig. 268). The adult beetle lives chiefly upon the pollen of certain plants, but the larva or grub lives indoors, and, feeding on rugs, woolen goods, collections of natural history, furs, hairs, and drugs, is a serious pest.

Another family of small beetles, the Cucujidæ, is represented among drug pests by several species of the genus Silvanus. The beetles belonging to this genus are about one-tenth of an inch long, light brown, flattened, and with antennæ clubbed at the tip (see Fig. 269). I have found Silvanus surinamensis attacking almond meal, Silvanus advena feeding onaconite root, and another species of Silvanus attacking angelica seed, quince seed, bitter-sweet, senega root, hyoscyamus, pellitory root, etc.

A large black beetle, Tenebrio obscurus (family Tenebrionidæ), is sometimes found attacking drugs. I have taken it in jars of parsley root. It is three-quarters of an inch long, dull black all over, with bead-like antennal joints, and with narrow, parallel, longitudinal ridges along the wing-covers. A small, shining, black beetle (genus Paromalus), belonging to the family Histeridæ, has been found in powdered poke root. Two species of Ceutorhynchus, small snouted beetles or weevils,
infest poppy and other seeds. Another weevil, Calandra oryza, imported from Europe, infests rice and ground roasted acorns.

The beetles comprise the chief drug pests, but some other orders of insects are represented by a lesser or greater number of pests.

The Lepidoptera or butterflies and moths, while possessing, in the adult stage, mouth parts adapted for sucking, have, in the young stages, strong biting-jaws. The young are the well-known caterpillars, and may be distinguished from the young or grubs of beetles by the number of legs. The larva or grub of the beetle has but three pairs of legs, and these are attached to the first three segments of the body lying just behind the head; the larva or caterpillar of a moth has, in addition to these three pairs of so-called thoracic legs, usually five more pairs of legs, four of these pairs being attached to segments in the middle region of the wormlike body, and the fifth pair being attached to the last segment of the body. The grubs of beetles sometimes have in addition to their three pairs of thoracic legs a single leg on the last segment of the body.

![Diagram of moth life stages](image)

*Fig. 270.—* *Tinea penionella* Linné.  
*a.* Adult moth.  
*b.* Pupa.  
*c.* Larva.  
*d.* Case.—*(Original,)*

Every one knows of the clothes-moth, dread foe of the housewife, which, as a small white caterpillar, living in a cylindrical roll or case (see d, Fig. 270) made from the woolen cloth or fur on which it is feeding, does irreparable injury to the choicest fabrics and costliest furs. This moth belongs to the genus *Tinea*, of which one or more species attack drugs. Fig. 270 illustrates the life history of the moths of this genus; c is the larva or caterpillar; b is the pupa or resting stage; and a is the adult moth. The moth is very small and light brown in color. I have found a Tineid attackingaconite root. Another moth, known as the Angoumois grain moth (*Gelechia cerealella*), attacks, in the caterpillar stage, all
kinds of stored grain. It bores holes into the grain kernels and eats out the starchy interior, leaving only a delusive hollow shell. Figure 271 shows the appearance of the infested grain kernels. The larva of Carpocapsa amflana, a moth of the same genus as the codlin moth, the greatest insect pest of the apple, infests the seeds of Corylus avellana, Juglans regina, and Castanea vesca. The larva of Mylois ceratonia feasts on the fruits of Ceratonia siliqua and Castanea vesca. The larva of the moth Cepophaga olivella inhabits the kernels of the olive, causing the dropping of the fruit and a smaller yield of oil.

![Image of grain kernels]

Passing now to another order of insects, the two-winged flies, we find that while the mouth parts of the adult flies are adapted for sucking or lapping, the young flies, which appear as grubs or maggots, are in many cases better prepared to partake of solid food. The olive in southern France and Italy is infested by a larva of a fly known as Dacus oleae; in the kernels of fresh hazelnuts are often found the larvæ of a fly which belongs to the same genus as that notorious wheat pest, the Hessian fly. The fly Trypetta arnicivora is often gathered in its youthful state with arnica flowers, and becomes developed later on, after feeding on the flowers in the pharmacist's canisters.

The book-louse insects (genus Atropos) have at least one representative in the list of drug pests. I have found a species (probably divinatoria) of this genus attacking golden seal and hyoscyamus. The insect is very small, hardly a twentieth of an inch long. When examined with a microscope it is found to be wingless, and of a general appearance as shown in Fig. 272. This insect represents the family Psocidæ, of the order Pseudoneuroptera.

The order of wingless insects Thysanura, which includes the “fishmoths,” those active scale-covered little creatures of the household, is represented by a member of the genus Lepisma (probably saccharina) (see Fig. 273), which I have found in jars of mezereon bark and Socotrine aloes.
Finally, in jars of gall the pharmacist may find numerous little fourwinged, compact-bodied "flies," which are not, however, attacking his stores, but which are only the insects which produced the galls, now issuing from them. These little insects (see Fig. 274) are Hymenoptera, belonging to the genus Cynips. The pharmacist may find other Hymenoptera (distinguished by having four clear membranous wings with almost no veins in them, see Fig. 274) in his jars and cans; but these insects are his benefactors. They are parasitic on the beetles and other insect pests which are feeding on the drugs, and thus do much good. Their eggs are laid on the body of the grub of the drug-eating beetle, and the young hymenopteron, on hatching, eats its way into the beetle-grub and lives there at the expense of its host.

**REMEDIES**

Coming now to the matter of remedies, a reviewing of the notes thus far presented shows that beetles are the most serious and numerous of drug pests, and that practically only insects which have biting mouth parts are injurious. In fighting insects with biting mouth parts the common means employed by entomologists is to cover the substance attacked (usually the green foliage of plants) with a thin coating of arsenic, by
means of spraying. In the nature of the case this method is out of the question in fighting drug pests, but, because the drugs are capable of being easily handled and subject to treatment in air-tight vessels, a very convenient, effective, and universally applicable method is possible, namely, treatment with vapor of bisulphide of carbon. The vapor of bisulphide of carbon is deadly to all insects in all stages, except the egg stage. The infested drug should be placed in a tight vessel (after having removed the dust and debris caused by the attacks of the insects) and a quantity of bisulphide of carbon, sufficient to charge the vessel with vapor, introduced. Any insect in the vessel will be killed. The remedy is simple, effective, and is feasible in the case of almost any drug.

Prevention of attack may be accomplished in some degree by the use of tight cases, though often the insects are introduced into the case with the drug, the drug specimens having come from an infested lot. Occasionally inspection of the jars and cans will detect the insects before they have had time to do much damage.

The ease of the detection of the presence of insects, and the ease with which the pests may be killed, makes it certainly worth the while of any druggist to devote a little time required for the effective prevention of insect damage to his stores.
PART IV

POWDERED DRUGS

A.—METHODS FOR IDENTIFICATION

Vegetable drugs frequently, perhaps in the majority of cases, reach the pharmacist in the form of powders, and it is necessary not only to identify them, but to determine their quality in this form. The old and laborious method of making powders in small quantities, by the pharmacist in his own store, has been supplanted by the specialized industry of drug milling. Thus it is that adulteration is made easier and its detection more difficult. Formerly it was considered sufficient for identification of vegetable drugs to describe gross characteristics, such as, color, odor, taste, and such other characteristics as might be brought out by hand lens; but this method is wholly inadequate, and a more detailed examination, microscopical and chemical, now is required. The enforcement of the drug and food laws will require workers skilled in microscopical technique.

Pulverization and Powdering.—Prerequisite to the microscopical study of vegetable powders is a knowledge of the processes of pulverization and drug mills, such as may be found in any well illustrated work on pharmacy, and elements of plant anatomy.

The degree of fineness of the powders is of first importance in microscopical examinations. Coarse powders can not be used and if they are too fine the fragmentary tissues and products are too small to be recognized. These degrees of fineness are represented by certain numbers. A No. 80 powder, as defined by the U.S.P. VIII, for example, is one that will pass through a sieve having 80 meshes to the inch. In the U.S.P. IX No. go powder is defined as “Very fine powder, has a fineness in diameter of particles less than 0.17 millimeters,” and it is specified also that the larger proportion of this must not pass through a sieve of lower degree of fineness (See U.S.P. IX, Part II). To obtain the best results, microscopically, powders may vary in fineness from No. 60, a fine powder, to No. 80, a very fine powder.

During the process of pulverization the less resisting tissues, such as thin-walled parenchyma cells, which, for the most part, contain starch, proteids and crystals, are reduced rapidly to powder, while the woody and fibrous parts together with the tracheids and vessels are quite
difficult to pulverize. Accordingly, frequent sifting should be resorted to during the process, so that as the broken fragments are reduced to the proper size to pass through the sieve they may be removed. The process of grinding and sifting must be continued until all the tissues have passed through the sieve. Powders in small quantities may be made by means of a mortar and pestle, and if the material is thoroughly dry the time and labor need not be great. A mortar and pestle made rough by the use of coarse carborundum powder has proved very efficient. Coarse powders in considerable quantity may be made in an ordinary small coffee mill. The process of grinding may then be continued by means of mortar and pestle and the fineness carried to any degree desired.

**Color.**—Vegetable powders are liable to vary greatly in color. Some of the common factors which cause this variation are light, moisture and increasing fineness. Exposure to light deadens the color, in some cases very rapidly, a light or reddish-brown soon becoming a dark or dull brown, etc. By exposure to moisture most powders grow dark in color. Increasing fineness produces varying tints and, in some instances, the quality of the color is wholly changed; for example, Spanish Licorice, in coarse powder, is yellow showing considerable portions of brown cork, while a very fine powder is almost lemon color. If the process be carried on by alternate grinding and sifting, as described above, tints from yellow to light lemon yellow will be obtained. The aging of powders, even when not exposed to light, changes them to darker tints. Powders made from plant parts, rich in oil, are likely to be dark in color and the darkening may become marked if heating is allowed to occur during the grinding. They darken rapidly on exposure to light and are likely to become rancid.

Various systems of classification by colors have been worked out for the vegetable drugs. Doctor Schneider has divided them into six groups as follows: 1, Very light; 2, Yellow; 3, green; 4, gray; 5, brown; 6, very dark. Professor Henry Kraemer forms them into five main groups: 1, Greenish powders; 2, yellowish powders; 3, brownish powders; 4, reddish powders; 5, whitish powders. These groups are subdivided according to the forms of cells, nature of the cell wall and cell products. All such systems as these are more or less artificial, and although useful in many cases, have not proved wholly satisfactory in the laboratory.

**Identification by Odor.**—The odors from drugs are exceedingly difficult to describe, largely because we have no odor standards at command for comparing them qualitatively or quantitatively. We can
understand such terms as aromatic, pungent, fragrant, agreeable, disagreeable, etc. These terms serve in a measure to indicate odor qualities.

The student is recommended to acquaint himself with such aromatic odors as cinnamon, cloves, nutmeg; with the mint family odors, such as peppermint, spearmint, pennyroyal, etc. He should acquaint himself with such odors as are furnished by the odorous fruits of the Umbelliferae, such as caraway, fennel, etc.; with camphoraceous odors, as eucalyptus, rosemary, and camphor; with pronounced and characteristic odors of wintergreen, sassafras, etc.; with the delicate and fragrant odors derived from the lemon, orange, orange flowers, etc. He should not omit the study of the disagreeable odors, as we find in conium, valerian, stramonium, garlic, civet, castor fiber, etc. All such odors serve as a means of comparison.

It will be seen that in order to describe an odor it becomes necessary to have some prominent characteristic odor with which to compare. The Pharmacopoeia (viii) states that conium has a mouse-like odor; sumbul, a musk-like odor; lactucarium, a heavy odor; senna is described as having a tea-like odor, etc. Tarry substances that have a creosote or smoky odor are said to have an “empyreumatic odor.”

Identification by Taste.—What has been said of the odor of drugs applies also to their taste. Taste is not a very distinctive property. There are some drugs that have a distinctive taste, such as gentian root, which has a simple bitter taste; senega, an acrid taste; ginger, a pungent; geranium, astringent; elm bark, mucilaginous, etc. Many drugs have what may be termed a mixed taste. Hence we find in descriptions such terms as: bitter-astringent applied to cinchona; bitter-pungent applied to orris root; pungent-astringent applied to cotton-root bark; bitter-sweet, applied to dulcamara; sweetish-bitter-pungent, applied to spigelia, etc. Many drugs are tasteless, such as lycopodium, kamala, physostigma, etc.

It is plain to be seen from the foregoing that the taste, as well as the color and odor of powders, is not distinctive enough to identify them with certainty; still, these physical properties serve in many cases as a valuable aid in their identification.

Adulterants and Their Identification.—As stated above, adulteration of drugs is made easier and the detection of adulterants is
more difficult when the drugs are reduced to powders. Great skill is required in the identification of adulterants; for the art of drug adulteration is an old one and the materials employed-have been selected, often ingeniously, on account of their very close resemblance to the true articles they replace. In the case of whitish powders, foreign starches, especially the common cereal starches, have been used, and not infrequently have the “scrapings” from bakeries been parched or browned to the proper degree and employed in drug and food adulteration. The endocarp of the olive, cocoanut, and walnuts; exhausted coffees; cocoa shells; and other similar substances, which are composed chiefly of stone cells, have been employed to a large extent in admixture with brownish powders. The use of wheat bran or middlings in ginger has been a common practice. Sometimes inorganic substances such as talc, chalk, clay, sand, etc., are employed. One of the most difficult means of adulteration to detect is the use of exhausted powders (the dregs left from drugs extracted by percolation). These are first dried and repowdered and mixed in various proportions with the pure article. Deteriorated drugs have been used in the same way. It goes without saying that these latter forms of adulteration can not readily be detected microscopically, but a microscopical examination in connection with careful chemical tests is of the greatest value.

A thorough knowledge of the histology of the plant part supposed to constitute the powder is necessary. And for this purpose cross and longitudinal sections, which may be prepared after soaking the dried drug materials in water, may, in many cases, be used to great advantage. By careful comparisons of sections and broken fragments, and the employment of proper reagents upon cell-products, identification is made positive. For a full account of cell-products and reagents, see Part IV, Chapters II and III.

**Mounting Powders for Examination.**—Powders for microscopical examination should be thoroughly mixed, so that the large and small particles will be uniformly distributed throughout the entire specimen, as before stated. In powders that have been standing for a considerable time the larger particles will be separated from the finer, so that great difficulty may be encountered in obtaining a typical mount from such a powder, unless it has been thoroughly mixed. Only a small portion of powder should be used in making a mount, the amount depending upon the size of the cover-slip to be used. When the mount is ready for examination, the particles should be spread out evenly and should not come in contact one with another so that the large ones might obscure
Powders for examination may be mounted directly on the slide, using the proper medium, or the powder may be mixed with the mounting medium in a small test-tube, specimen tube, or homeopathic vial. If a small portion of powder be transferred to a slide, a drop of the desired mounting medium added, and the whole thoroughly mixed and covered with a coverslip, it will furnish a mount ready for examination. However, it is frequently desirable or even necessary to use some clearing agent in order to render dark colored or opaque powders transparent. In such cases the powder should be thoroughly mixed with the reagent and left standing for twelve hours or more, when a portion may be taken up with a pipette and a drop of the mixture transferred to a slide.

**Clearing Agents and Mounting Media.**—For making temporary mounts of powders water is the best general medium, and should be used whenever a clearing agent is not required. In this medium delicate markings are clearly brought out, and it is especially recommended for the examination of starches. Frequently specimens are filled with air, which must be removed before a satisfactory examination can be made. For driving out air 70 per cent. or stronger alcohol should be used, but this is not a desirable medium for general use, as it evaporates rapidly and allows the specimens to dry up. However, this medium is excellent for bringing out details of structure, and may be profitably employed when a hasty examination is to be made. It can be replaced by water or other media as desired.

Equal parts of water and glycerine furnish one of the best and most useful mounting media. This mixture is especially desirable when delicate markings are not brought out in water. It acts as a clearing agent, and although the action is somewhat slow, it will render most specimens clear enough for examination. Equal parts of water, glycerine, and alcohol make a reagent to be preferred to the above in many respects, and is the most useful of the simple and cheap reagents. This mixture penetrates tissues well, acts as a clearing agent, and does not dry up. Specimens may be kept in it for days or even weeks.

In the examination of many specimens it is necessary to use a strong clearing agent, and it is frequently desirable to have one that acts rapidly. Chloral hydrate, made by dissolving five parts of chloral hydrate crystals in two parts of water, is one of the most common and
useful clearing agents. Its action is rapid, but it is not a good medium for mounting in many cases, since delicate markings are not clearly brought out by it. In many specimens starch is dissolved by this reagent, and it should never be used when accurate measurements of starch grains are to be made. However, chloral-hydrate solution with iodine added is the best and most reliable agent for the detection of starch, and is especially recommended where starch occurs in small quantities or is likely to be obscured, as in chloroplasts or by proteid substances.

A clearing agent to be preferred to the above for general purposes may be made by mixing 1 part of 95 per cent. alcohol, 1 part glycerine, 1 part water, and 4 parts saturated aqueous solution of chloral hydrate. This mixture gives a reagent fairly rapid in action, and also serves well as a mounting medium. It is the most useful clearing agent and can be employed in more cases than any other.

Potassium hydrate in 2 to 10 per cent. aqueous solution is valuable as a clearing agent, and also serves well as a macerating agent. It is rapid in action, and dissolves starch. Acetic acid, 20 per cent., and hydrochloric acid, 10 to 20 per cent., may be found exceedingly useful as clearing agents in many cases. They are often valuable in removing starch from specimens where it may interfere in an examination.

In the preparation of specimens which are exceedingly difficult to clear, or in handling coarse powders where the fragments are so large that they must be broken up by macerating before mounting, javelle water and Schultz's macerating fluid will be found useful.

The action of any of the clearing agents mentioned above may be hastened or increased by the application of heat. By holding a mounted specimen over the flame of an alcohol lamp or a Bunsen burner it can be heated without injury, even to boiling, if proper care be exercised.

**Measurements.**—The fragments of powders should be carefully measured, and the measurements used for comparison wherever it is possible to do so. Measurements should be made with an eye-piece micrometer. In preparing specimens for measurement the greatest care should be exercised in the use of reagents so that objects may not be swollen abnormally or distorted before measurements are made.

On the following pages are given a few examples to show the diagnostic characteristics of some powders which frequently, either by mistake or
The first example is illustrated by the barks taken from the same genus—Frangula, Fig. 275, and Cascara sagrada, Fig. 276. A comparison of the fragments composing these two powders shows them to be very similar in structure. Cascara presents one striking difference, as shown by the sclerenchymatous cells, sc, Fig. 276, which occur quite commonly, but occur rarely, if ever, in Frangula. In each of the specimens are bast fibers, but in Frangula the fibers have thicker walls and contain more numerous and well-defined pits than do the fibers of Cascara. Also the cork cells and the large parenchyma cells of the cortex show characteristics which are of diagnostic value. In Frangula the cork cells contain a deep red or purplish coloring substance, while those of...
In the large parenchyma cells of Cascara is found a substance yellowish in color which changes to orange upon the addition of potassium-hydrate solution, while in Frangula the large parenchyma cells contain a coloring substance of a much brighter yellow, which upon the addition of potassium-hydrate solution changes to a red or deep purplish color.

The second example is illustrated by two roots taken from closely related species—Brazilian Ipecac, Fig. 277; Psychotria Ipecacuanha (Stokes) of the British Pharmacopoeia; Cephælis Ipecacuanha (A. Richard) of the
U.S.P.; and undulated Ipecac (Fig. 278), which represents species from several different genera, such as Richardsonia, Psychotria, Ionidium, etc. The starch grains from each specimen are similar in form and structure, the only difference being that the starch grains from Brazilian Ipecac, ranging in size from 4 to 15 microns, are uniformly smaller than are those of undulated Ipecac. The elements of the xylem, however, furnish a ready and reliable means of distinguishing between these two powders. The xylem of Brazilian Ipecac consists of tracheids, tr, Fig. 277; and of peculiar strongly pitted wood parenchyma, which somewhat resembles tracheids, fl, Fig. 277. Undulated Ipecac shows the presence of strongly pitted water tubes (pitted vessels), v, Fig. 278, and quite typical wood fibers, fl, Fig. 278. Brazilian Ipecac does not show water tubes, unless fragments of the stems become mixed with the roots.
As a third example, the leaves of Belladonna, Fig. 279, and Hyoscyamus, Fig. 280, furnish an excellent illustration. The epidermal cells of Belladonna are large with wavy walls and the cuticle is striated, es, Fig. 279; while Hyoscyamus has epidermal cells similar in every respect excepting the striated cuticle, e, and es, Fig. 280. The spongy parenchyma of Hyoscyamus contains numerous crystals of calcium oxalate, usually in the form of prisms, cr, ccr, Fig. 280, while Belladonna is without calcium oxalate excepting for crystal sand, which is contained in a few large cells of spongy parenchyma adjoining the palisade parenchyma—c, cr, Fig. 279. The presence of prismatic crystals in Hyoscyamus is the most striking diagnostic character of these two powders.
The trichomes furnish other valuable diagnostic characters, but they are not always reliable, since Belladonna leaves that are almost glabrous, and consequently almost devoid of trichomes, are sometimes found. Either specimen may contain both simple and glandular hairs. The simple hairs are conical and may be composed of one or more cells. In Hyoscyamus the glandular heads, which may be either bicellular or multicellular, pg, Fig. 280, are borne on a stalk composed of two or more cells. The glandular hairs of Belladonna are found with heads either unicellular or multicellular. The larger multicellular glands are usually borne on a stalk consisting of one or two cells, pg, Fig. 279, while the smaller ones are likely to have a stalk composed of several superimposed cells. The unicellular glands are rounded in form and are borne on stalks of several Cells, pg, Fig. 279.
It should be stated that each drug has its own peculiar microscopical elements. Some of these, it is easy to see, are of special value in the identification of drug powders.

GENERAL DIRECTIONS

As a general direction for the detection of adulteration or admixture it cannot be too strongly emphasized, that authentic samples of the pure drug, and of the suspected adulterant or admixture, should be carefully studied, macroscopically, and microscopically, as a preliminary process. This laboratory method supersedes all the aids in the form of representation by drawings and figures on paper.

An examination of a drug powder should never be considered complete until the sample, has been compared with authentic specimens of the same drug or drugs of the same degree of fineness.
FIG. 281.—Shows Starch-granules of Ipecac. (X 750.) The cells of the bark are filled with starch. The granules are spherical, oblong, or angular, and vary much in size. The hilum is located near the center, and is often seen to be fissured. The grains are smooth, and show no concentric markings. They are often in groups of two, three, and sometimes even more grains joined together.

FIG. 282.—Shows Starch-granules of Jalap. (X 250.) The grains are very numerous in the cells; are large and have characteristic markings. They are rounded or broadly ovate, having the hilum located near the small end and surrounded by excentric lines.

FIG. 283.—Shows the Starch-grains of Veratrum viride (X 350), which so closely resemble those of Veratrum album that it would be impossible to distinguish the two by their starch-grains. Those of the former are often found in groups of twos, threes, fours, and sometimes even more. They are small, rounded, or angular, with the hilum in the center.

FIG. 284.—Represents Starch as it appears in Calumba. (X 350.) The grains are large, and in shape they are circular or oval. A few double or compound grains are found, but they do not occur frequently. The hilum is rather excentric, and is often seen to be fissured in a radial direction. The grains are smooth, and occasionally a curved line or two is to be found.

FIG. 285.—Shows Starch-grains as they appear in Galengal. (X 350.) The grains are large and mostly long ovate, but sometimes they are irregular. The hilum is located near the larger end, and is sometimes fissured. The stratification lines are plainly seen on the larger grains and but faintly, if at all, on the smaller ones.

FIG. 286.—Illustrates Starch-grains as seen in a specimen of Iris florentina. (X 500.) These grains are quite characteristic and very abundant. They are rather elongated, rounded or truncate at one end, and usually tapering toward the other end. Occasionally a three-lobed grain is seen. As a rule, the grains are irregular in shape. The hilum is located near the large end, and is slightly fissured. (a) is the most common form. A very prominent characteristic is a double line branching from the hilum and extending toward the other end.
FIG. 287.—Shows Starch-grains as they appear in Caulophyllum. (X 250.) The grains are small, but quite characteristic. They are mostly gathered together in large and roundish masses, consisting of twenty-five to fifty grains. The single grains are globular, or more commonly many-sided, and without hilum or stratification lines.

FIG. 288.—Shows the Grains as they appear in Aconitum napellus. (X 850.) This drug is very rich in starch. The starch-grains are rather large. There are a great many compound grains composed of from two to eight granules. The single grains are round, long, and in some cases have flat faces. The hilum is located centrally, and is seen at times to be fissured slightly. The concentric markings are not discernible.

FIG. 289.—Shows Starch-grains as they appear in Geranium. (X 1200). There are specimens of Geranium in the market that contain little or no starch. This somewhat singular fact is said to be due to the season in which it is gathered. The drug usually contains starch in abundance. The grains are rather long, and appear to be thicker at one end than at the other. The hilum is located generally at the larger end, but sometimes central, and it occasionally appears at the smaller end. The stratification lines are very faintly seen at times.

FIG. 290.—Shows Starch-grains as they appear in Honduras Sarsaparilla. (X 500.) Many of the grains are seen to occur in groups of two, three, and sometimes four. The single grains are spherical or angular, with a hilum located near the center. The hilum in the larger grains is angular fissured. No concentric markings can be seen.

FIG. 291.—Shows Starch as it appears in Podophyllum. (X 550.) The grains are small and mostly single, but sometimes they are double or triple. They are spherical with a central hilum, and are seldom fissured. The hilum can hardly be seen in the smaller grains.

FIG. 292.—Shows Starch as it appears in the rhizome of Hydrastis. (X 1300.) The starch is very abundant. The grains are most commonly joined together in groups of from two to six. The grains, when single, are rounded in form. The hilum is indistinct and unfissured.

NOTE.—The drawings of the starches were made from authentic specimens of the crude drug of the market.
TYPES OF DRUG POWDERS

The following pages <512-519> are illustrations of some of the more important drug powders of the National Formulary and of the Pharmacopoea, designed to illustrate how characteristic elements may be selected for purposes of microscopical identification.

On pages <520-528> will be found condensed descriptions of the characteristic elements of some of the more important drug powders selected mainly to give as wide a range as possible for purposes of identification.


Sayre's Materia Medica part VI - Page 62

Fig. 298.—Powdered Zingiber, Jamaica Ginger. (X 183.) A, Starch. B, Water tubes. C, Parenchyma cells. D, Sclerenchyma fibers.

Fig. 302.—Nux Vomica. (× 183.) A, Fragments of trichomes. B, Thick-walled cells of the endosperm, containing granular proteid. C, Fragments of trichomes showing the pointed tips. D, Fragments of trichomes showing the rounded bases.

Sayre's Materia Medica part VI - Page 67
B-ALPHABETICAL LIST OF DRUG POWDERS WITH SYNOPSIS OF ESSENTIAL MICROSCOPICAL ELEMENTS

(For more detailed description of the microscopical elements see U.S.P.)

146. ACONITE

Powder.—Grayish-brown; starch grains, nearly spherical, simple or 2 to 5 compound (3 to 15 µ in diam.); stone cells, large, tabular, irregular, or elongated to fibers; yellowish-brown cork fragments, few; tracheae, spiral, reticulate or with bordered pits; parenchyma, relatively thick-walled, filled with starch.

341. ALTHÆA

Powder.—White or light yellow; starch grains, numerous (5 to 20 µ in diam.), calcium oxalate crystals in rosette aggregates (15 to 35 µ in diam.); bast fibers in groups, sometimes not strongly lignified, tracheae scalariform or with bordered pits; numerous parenchyma fragments with large mucilage cells.

381. ANISUM

Powder.—Yellowish-brown, fragments of pericarp showing portions of yellow oil reservoirs numerous; small tracheae accompanied by sclerenchyma fibers; endosperm cells filled with aleurone (about 6 µ in diam.), each containing a rosette crystal of calcium oxalate (about 2 µ in diam.); 1-celled hairs up to 2000 µ long, having slight projections on the surface; the endocarp is characteristic.

565. ARNICA

Powder.—Yellowish-brown, pappus consists of multicellular axis with unicellular branches; non-glandular hairs 1- to 6-celled, glandular hairs of three kinds, with unicellular stalk and unicellular head; a 4-celled stalk and unicellular head, or a 10-celled stalk of a double row of cells with a 2-celled head; pollen grains numerous, spherical (25 to 35 µ in diam.)

42. AMYLUM

Powder.—White, starch grains, polygonal, rounded or spherical (3 to 35 µ in diam.) with central cleft 3 to 5 rayed.

12. ASPIDIUM

Powder.—Greenish or brown; starch grains, numerous, oval or oblong (5 to 15 µ in diam.) in characteristic clumps; fragments of parenchyma sclerenchyma fibers and tracheids numerous; and characteristic brown fragments of the endodermis.

Numbers refer to No. of drug in Part II.

Sayre's Materia Medica part VI - Page 68
447. ASPIDOSPERMA

Powder.—Reddish-brown; starch grains, spherical, ovoid or plano-convex (3 to 25 µ in diam.); bast fibers, long accompanied by crystal fibers; stone cells in large groups; cork cells sometimes lignified; calcium oxalate in prisms or pyramids (8 to 30 µ long).

278. AURANTII AMARI CORTEX

Powder.—Yellowish to light brown, consists mostly of parenchyma with occasional membrane crystals of calcium oxalate (4 to 30 µ long); tracheae, few small, spiral or with simple pores.

504. BELLADONNÆ FOLIA

Powder.—Green, consists mostly of irregular leaf fragments; calcium oxalate small in small aggregates or wedge-shaped micro-crystals; hairs, few, the nonglandular 2 to 5 cells, the glandular with 1- to 3-celled stalks and heads one to many celled; tracheae, annular, spiral, reticulate or with bordered pits; few long thinwalled bast fibers and few pollen grains. (See Fig. 279.)

503. BELLADONNÆ RADIX

Powder.—Light brown; starch grains, numerous, spherical, polygonal or plano-convex (3 to 30 µ in diam.) 2 to 8 or more compound; micro-crystals of calcium oxalate numerous (3 to 10 µ); cork cells, few; tracheae, few and large, usually associated with wood fibers; long bast fibers from stem bases are often present.

274. BUCHU

Powder.—Pale green, consists mostly of parenchyma, often containing sphærocrystals of inulin (25 to 40 µ in diam.) and numerous globules short and unicellular; aggregate crystals of calcium oxalate (15 to 25 µ in diam.); tracheids and bast fibers, few. (See Fig. 294.)

156. CALUMBA

Powder.—Yellowish to greenish-brown; starch grains, numerous (8 to 85 µ in diam.) few 2 to 3 compound, ovoid, ellipsoidal or irregular usually with excentral hilum; stone cells, few, usually containing one or more prismatic crystals of calcium oxalate, sometimes having micro-crystals; tracheae, few, reticulate or with bordered pits; occasionally, wood-fibers with long, oblique, slit-like pits; cork cells, yellow in regular radial rows and tangentially stretched.

112. CANNABIS

Powder.—Dark green, consists of fragments of leaves, and bracts showing yellowish lacticiferous vessels, rosette aggregates of calcium oxalate (6 to 30 µ in diam.), and fragments of fruits and stems; non-glandular hairs, unicellular, pointed, usually
containing some calcium carbonate which gives a strong effervescence with dilute HCl; glandular hairs, short with 1-celled stalk, or long multicellular, the head consisting of 8 to 16 cells; palisade-like, thick-walled cells from the fruits; tissues of embryo and endosperm with numerous aleurone grains (5 to µ in diam.) and oil globules.

CANTHARIS (See animal products)

Powder.—Grayish-brown, showing conspicuous shining green particles and numerous long, pointed hairs.

516. CAPSICUM

Powder.—Yellowish-brown to brownish-red, cells of epidermis of uniform size and regular arrangement; parenchyma containing numerous reddish oil globules, and chromoplasts; stone cells of endocarp with yellowish wavy, moderately thickened porous walls, those of the seed coat, yellowish, irregular, strongly thickened and much more strongly lignified than those of the endocarp.

82. CARDAMOMI SEMEN

Powder.—Greenish-brown, fragments of seed with dark brown stone cells (20 µ in diam.); polygonal in surface view; cells of endosperm and perisperm containing compound starch grains (1 to 4 µ in diam.); a few small tracheæ may be present.

385. CARUM

Powder.—Yellowish-brown; fragments of pericarp with light yellow oil ducts; tracheæ often accompanied by sclerenchyma fibers which are slightly lignified and have oblique pits; endosperm cells contain aleurone grains which usually include a rosette of calcium oxalate about 1 µ in diam.

371. CARYOPHYLLUS

Powder.—Dark brown to reddish-brown; thin-walled parenchyma showing large oil reservoirs; a few small spiral tracheæ and thick-walled spindle-shaped bast fibers, rosettes of calcium oxalate (2 to 15 µ in diam.); pollen grains (15 to 25 µ in diam.).

334. CASCARA SAGRADA

Powder.—Light or dark brown; bast fibers, usually in groups accompanied by crystal fibers; thick-walled stone cells in large groups; parenchyma and medullary ray cells have numerous nearly spherical starch grains (3 to 8 µ in diam.); calcium oxalate in prisms or rosettes (8 to 20 µ in diam.); reddish-brown cork fragments. (See Fig. 276.)

133. CIMICIFUGA

Powder.—Light or dark brown; starch grains, numerous, simple or compound,
spherical or polygonal (2 to 15 µ in diam.); tracheae, mostly with bordered pits and usually associated with lignified wood fibers; yellowish-brown fragments of epidermis.

532. CINCHONA

Powder.—Reddish-brown, bast fibers, large spindle-shaped (300 to 1500 µ long) often showing lamellated walls; starch grains, simple or 2 to 5 compound, nearly spherical (3 to 12 µ in diam.); calcium oxalate in wedge-shaped micro-crystals; reddish-brown fragments of cork. (See Fig. 296.)

532. CINCHONA RUBRA

Powder.—Light brown to brown; elements similar to those of Cinchona, but starch grains are usually fewer and smaller.

169. CINNAMOMUM SAIGONICUM

Powder.—Yellowish or reddish-brown; starch grains simple or compound, ellipsoidal or polygonal (3 to 20 µ in diam.); stone cells, irregular colorless or filled with a reddish-brown amorphous substance; bast fibers having thick slightly lignified walls, single or in groups (300 to 1500 µ long); reddish-brown cork fragments. (See Fig. 300.)

167. CINNAMOMUM ZEYLANICUM

Powder.—Light or yellowish-brown; starch grains simple or compound, ellipsoidal or polygonal (3 to 20 µ in diam.); stone cells, numerous, irregular, colorless or containing reddish-brown amorphous substance; bast fibers, with thick, slightly lignified walls, spindle-shaped (300 to 1000 µ long). Calcium oxalate raphides (5 to 10 µ long) sometimes present.

68. COLCHICI CORMUS

Powder.—Light to grayish-brown; starch grains numerous, simple or 2 to 6 compound, spherical or polygonal (3 to 30 µ in diam.); few spiral or scalariform tracheae; few fragments of reddish-brown epidermis.

69. COLCHICI SEMEN

Powder.—Light brown; parenchyma of endosperm thick-walled with simple pits and containing aleurone grains (3 to 15 µ in diam.) and oil globules; cells of seed coat somewhat collapsed, having thin reddish-brown walls; and a few small ellipsoidal starch grains (5 to 16 µ in diam.).

544. COLOCYNTHIDIS PULPA

Powder.—Yellowish-white or buff; consists chiefly of parenchyma cells usually in fragments; tracheae only occasional; from the seed coats few stone cells which are nearly isodiametric or irregular; few oil globules and aleurone grains.

Sayre's Materia Medica part VI - Page 71
386. CORIANDRUM

Powder.—Light brown; fragments of endosperm, filled with aleurone grains usually containing aggregates of calcium oxalate, and oil globules; sclerenchyma fibers, yellowish thick-walled, irregularly curved; few fragments of yellow oil reservoirs, and polygonal epidermis; calcium oxalate aggregates (3 to 10 μ in diam.) may be separated from the aleurone grains.

368. EUCALYPTUS

Powder.—Green; epidermis, thick-walled and strongly cuticularized: palisade, very numerous, 3 to 4 rows deep, in which occur large oil reservoirs containing yellowish contents. Calcium oxalate of rosettes or mono-clinic prisms (15 to 30 μ in diam.), in the spongy parenchyma are vascular tissues and few slightly lignified bast fibers.

382. FŒNICULUM

Powder.—Yellowish-brown; endosperm cells filled with aleurone grains each with a rosette of calcium oxalate (about 2 μ in diam.); yellowish-brown fragments of oil reservoirs; sclerenchyma fibers few, strongly lignified; spiral or annular tracheæ, few; parenchyma cells, numerous; sometimes with thickened walls.

333. FRANGULA

Powder.—Yellowish-brown; stone cells are absent, otherwise the elements are almost identical with those of Cascara Sagrada (see page 295). Frangula gives a deeper orange color than does cascara when treated with alkalis.

105. GALLA

Powder.—Brownish-gray; starch-bearing parenchyma cells numerous; starch spherical to polygonal (11 to 35 μ in diam.); stone cells few, variable (25 to 250 μ long); tracheæ spiral or reticulate.

438. GELSEMIUM

Powder.—Dark yellow; tracheæ, spiral and with bordered pits associated with long narrow fiber-tracheids; bast fibers, long and narrow; starch grains, spherical (4 to 8 μ in diam.); calcium oxalate in monclinic prisms (15 to 30 μ long); few very thick-walled groups of stone cells.

441. GENTIANA

Powder.—Light brown or yellowish-brown, consisting mostly of parenchyma cells varying much in size and form; tracheæ spiral, scalariform or reticulate; yellowish-brown cork.
230. GLYCYRRHIZA

Powder.—Brownish-yellow to pale yellow; starch grains oval or elliptical (3 to 25 µ in diam.); tracheae with bordered pits associated with wood fibers, numerous; bast fibers, numerous, very long and usually in groups accompanied by crystal fibers, containing prisms of calcium oxalate (2 to 25 µ in diam.); fragments of reddish-brown cork occur in Spanish Licorice.

366. GRANATUM

Powder.—Yellowish-brown to dark brown; crystals of calcium oxalate in aggregate prisms or crystal fibers (10 to 20 µ in diam.); starch grains, spherical to polygonal, simple or compound (2 to 10 µ in diam.); cork fragments, whitish; stone cells, usually occur singly and are strongly lamellated (40 to 200 µ long).

576. GRINDELIA

Powder.—Yellowish-brown; tracheae, annular spiral reticulate, or with bordered pits, associated with narrow wood fibers; leaf epidermis characteristic, showing large colorless multicellular glandular hairs; pollen grains, spherical spinose (about 35 µ in diam.).

329. GUARANA

Powder.—Pinkish-brown; irregular masses of parenchyma and altered starch grains; starch grains, spherical to polygonal (10 to 25 µ in diam.); few elongated, yellowish, thick-walled sclerenchyma cells, which are usually not lignified.

134. HYDRASTIS

Powder.—Yellowish-brown; starch numerous, usually simple, nearly spherical (2 to 15 µ in diam.); vascular tissues usually associated with starch-bearing parenchyma; tracheae spiral, reticulate or with bordered pits; few thin-walled wood fibers; and occasional fragments reddish-brown cork.

509. HYOSCYAMUS

Powder.—Grayish-green; calcium oxalate crystals in 4- to 6-sided prisms (15 to 25 µ long), in spherical or rosette aggregates (about 20 µ in diam.) or in wedgeshaped micro-crystals; non-glandular hairs 2 to 10 cells long; glandular hairs with stalk 1 to 4 cells long and 1 to many celled head; stomata broadly elliptical about 30 µ long, with 3 to 4 neighboring cells; tracheae spiral reticulate or with bordered pits and associated with few fibers; pollen grains about 40 µ in diam., nearly smooth. (See Fig. 280.)

530. IPECACUANHA

Powder.—Light brown; starch grains, numerous, simple 2 to 6 or more compound, spherical or polygonal (2 to 18 µ in diam.); calcium oxalate raphides (15 to 40 µ long)
few; tracheids numerous; occasional stone cells from stem bases (30 to 40 µ long). (See Fig. 277.)

460. JALAPA

Powder.—Light brown; starch grains, numerous, simple or 2 to 4 compound ellipsoidal to ovoid (4 to 35 µ in diam.); often swollen and somewhat altered; calcium oxalate in rosettes (10 to 40 µ in diam.); tracheæ with simple or bordered pits; laticiferous vessels containing yellowish-brown masses. (See Fig. 299.)

264. LINUM

Powder.—Lemon yellow to light brown; the seed coat has tabular pigment cells, filled with reddish-brown insoluble substance; stone cells elongated and yellowish; oil globules numerous; aleurone grains, numerous (2 to 20 µ in diam.).

552. LOBELIA

Powder.—Dark green; cells of seed coat more or less polygonal, walls thick and yellowish; few non-glandular hairs (30 to 60 µ long); tracheæ annular, spiral or reticulate, accompanied by narrow thin-walled wood fibers; leaf epidermis with elliptical stomata about 25 µ long and with 3 to 4 neighboring cells; pollen grains, nearly spherical about 25 µ in diam.

18. LYCOPODIUM

The spores are spherical tetrahedrons (25 to 40 µ in diam.) with the outer walls extended into irregular projections.

599. MATRICARIA

Powder.—Yellowish to yellowish-green; pollen grains numerous, spinose, varying from nearly spherical to triangular (about 20 µ in diam.); glandular hairs from the corolla, and cells of the anthers are characteristic; few sclerenchyma fibers.

473. MENTHA PIPERITA

Powder.—Dark green; non-glandular hairs 1 to 8-celled; glandular hairs with stalks 1 or 3-celled and 1 to 8-celled heads; pollen grains nearly spherical, smooth (about 30 µ in diam.); tracheæ, spiral or with simple or bordered pits; thin-walled sclerenchyma fibers, few.

474. MENTHA VIRIDIS

Powder.—Similar in structure to Mentha Piperita.

365. MEZEREUM
Powder.—Light grayish-brown; numerous long bast fibers (400 to 3000 µ long) somewhat uneven and bent, non-lignified; cork cells yellowish-brown; starch grains, few, simple or 2 to 4 compound (3 to 15 µ in diam.).

154. MYRISTICA

Powder.—Dark reddish-brown; perisperm of thin-walled parenchyma cells in which are large oil reservoirs; endosperm of parenchyma filled with starch and aleurone grains; starch, simple or compound, spherical to polygonal (3 to 20 µ in diam.); few small spiral tracheæ; oil globules numerous.

294. MYRRHA

Powder.—Yellowish-brown; mounted in fixed oil shows angular fragments; when cleared and stained in chloral hydrate iodine a few spherical or irregular starch grains (10 to 35 µ in diam.) may appear; when tested with phloroglucin may show fragments of sclerenchyma fibers or stone cells. (See Fig. 302.)

435. NUX VOMICA

Powder.—Light gray; endosperm cells thick-walled, containing oil globules and aleurone grains; numerous non-glandular, lignified hairs having pitted walls; cells of adhering fruit pulp may show few small spherical starch grains. (See Fig. 302.)

180. OPII PULVIS

Powder.—Light brown; consists of irregular granular fragments; epidermis of poppy capsules 4 to 5-sided or elongated, thick-walled and lignified; fragments of poppy leaves and rumex fruits.

548. PEPO

Powder.—Whitish or yellowish; outer epidermis palisade-like, cells up to 1 mm. long; stone cells variable in size and thickness of walls up to 75 µ long; parenchyma cells with peculiar reticulate markings or rather thick-walled and somewhat

185. SANGUINARIA

Powder.—Brownish-red; starch grains, numerous, (3 to 20 µ diam.) spherical to ovoid; simple or 2 to 3 compound; latex tissue fragments with reddish-brown masses; tracheæ with slit-like pits few,

239. SANTALUM RUBRUM

Powder.—Brownish-red; wood fibers numerous, walls thick, yellowish, up to 800 µ long; tracheæ, few with simple or bordered pits; crystal fibers with prisms of calcium oxalate (10 to 20 µ in diam.).
58. SARSAPARILLA

Powder.—Grayish-brown; starch grains, spherical to nearly tetrahedral, simple or 2 to 5 compound (3 to 25 µ in diam.); raphides of calcium oxalate (6 to 30 µ long); tracheae scalariform, reticulate or with simple or bordered pits, often associated with thin-walled sclerenchyma fibers; cells of hypoderm and endoderm yellowish, up to 500 µ long.

170. SASSAFRAS

Powder.—Light reddish-brown; starch grains, spherical to polygonal, simple or 2 to 4 compound (3 to 20 µ in diam.); bast fibers, spindle-shaped or irregular (150 to 400 µ long and 25 µ broad) with very thick walls; numerous parenchyma cells, many containing yellowish-red masses of tannin; few brownish-red fragments of cork.

462a. SCAMMONII RADIX

Powder.—Grayish-brown; starch grains, simple or 2 to 4 compound (3 to 18 µ in diam.); calcium oxalate in prisms (10 to 45 µ long); tracheae reticulate or with simple or bordered pits and usually associated with wood fibers; stone cells variable in form (40 to 125 µ long); few cork cells which are often lignified; fragments of phloem showing yellowish-brown resin cells.

67. SCILLA

Powder.—Light yellow; raphides of calcium oxalate (750 to 1000 µ long); parenchyma cells large, thin-walled, colorless; tracheae spiral or reticulate; occasionally a few nearly spherical starch grains occur.

302. SENEGA

Powder.—Yellowish-gray to brown; wood fibers non-lignified (175 to 250 µ long); fragments of thin-walled parenchyma containing oil globules; tracheae with simple or bordered pits; numerous medullary ray cells with large simple pits.

240. SENNA

Powder.—Light green (Alexandria Senna) or slightly darker green (India Senna); stomata broadly elliptical (about 20 µ in diam.) crystal fibers; calcium oxalate in rosettes (about 10 µ in diam.) or 4 to 6-sided prisms about 15 µ long); nonglandular hairs 1-celled, often curved, thick-walled and rough up to 350 µ long. In India Senna the hairs are relatively fewer. (See Fig. 295.)

118. SERPENTARIA

Powder.—Grayish-brown; starch grains spherical to plano-convex (3 to 14 µ in diam.), simple or 2 to 4 compound; trachea) annular, spiral or reticulate; short wood fibers; small amount of cork; numerous lignified parenchyma pith cells; few non-glandular

Sayre's Materia Medica part VI - Page 76
hairs from stem may be present.

188. SINAPIS ALBA

Powder.—Light yellow to brownish-yellow; parenchyma cells contain aleurone and oil; fragments of seed coats nearly colorless composed of small stone cells and large epidermal cells, the outer walls being mucilaginous; occasionally few small starch grains are present.

189. SINAPIS NIGRA

Powder.—Light brown to greenish-brown; thin-walled parenchyma of embryo contains aleurone grains and oil; fragments of seed coats composed of small yellowish stone cells with dark lumen; and large mucilaginous cells of epidermis often associated with the very large sub-epidermal cells.

439. SPIGELIA

Powder.—Grayish-brown; starch grains nearly spherical (2 to 6 µ in diam.); tracheae and tracheids conspicuous; few long slender bast fibers; fragments of reddish-brown epidermis and brownish cork.

304. STILLINGIA

Powder.—Pinkish or reddish-brown; starch grains variable in form, mostly simple (5 to 35 µ in diam.); tracheae with simple pits, usually associated with wood fibers; bast fibers long, narrow, thick-walled; reddish-brown cork; rosettes of calcium oxalate up to 35 µ in diam; somewhat tabular reddish-brown secretion cells.

507. STRAMONIUM

Powder.—Brownish-green; stomata elliptical about 25 µ long, usually with 3 neighboring cells; calcium oxalate in numerous rosettes (10 to 20 µ in diam.) in prisms or wedge-shape micro-crystals; non-glandular hairs with 1 to 2-celled stalks and 2 to 4-celled heads; spiral or annular tracheae stems have large tracheae with annular and spiral thickening or with bordered pits usually associated with wood parenchyma and occasional wood fibers; long collenchymatous cells are often present, (See Fig. 293.)

451. STROPHANTHUS

Powder.—Grayish to dark-brown; mostly composed of thin-walled parenchyma cells; many of which are colored greenish upon addition Of H₂SO₄; numerous fragments of long thin-walled hairs (relatively fewer in S. hispidus); numerous oil globules.

400, SUMBUL

Powder.—Grayish-brown; numerous large tracheae which are mostly reticulate; long
narrow collapsed fragments of phloem; few fragments of parenchyma containing starch grains (3 to 12 µ in diam.); numerous nearly colorless or yellowish to reddish-brown irregular fragments.

553. TARAXACUM

Powder.—Light brown; parenchyma cells large; thin-walled containing masses of inulin; fragments of yellowish latex vessels; reticulate trachea; and sclerenchymatous fibers.

256. TRAGACANTHA

Powder.—Whitish; irregular fragments showing lamellated mucilaginous walls and few starch grains nearly spherical, simple or 2 to 3 compound (3 to 17 µ in diam.).

37. TRITICUM

Powder.—Yellowish; tracheæ annular, spiral or with simple pits and associated with long narrow sclerenchymatous fibers; epidermal cells rectangular strongly lignified with numerous transverse pits; numerous fragments of rectangular thinwalled parenchyma.

109. ULMUS

Powder.—Light brown; bast fibers numerous very long and slightly lignified, often associated with crystal fibers; calcium oxalate in prisms (10 to 25 µ in diam.); starch grains, mostly simple, nearly spherical (about 3 or µ in diam. or up to 25 µ) fragments of large mucilage cells.

41L UVA URSI

Powder.—Olive green; epidermal cells polygonal; stomata, broadly elliptical about 25 µ long with 5 to 8 adjacent cells; tracheae mostly spiral, often associated with sclerenchyma and crystal fibers; prisms of calcium oxalate (6 to 15 µ in diam.).

543. VALERIANA

Powder.—Light brown or grayish-brown; starch grains spherical to polygonal, simple or 2 to 4 compound, (3 to 20 µ in diam.); tracheae reticulate or with simple or bordered pits often accompanied by sclerenchyma fibers; fragments of epidermis with root hairs and brownish cork.

60. VERATRUM VIRIDE

Powder.—Grayish-brown to dark brown; starch grains, spherical or ellipsoidal simple or 2 to 3 compound (3 to 20 µ in diam.); calcium oxalate raphides (15 to 150 µ long); tracheae scalariform or reticulate and usually associated with narrow sclerenchyma fibers; fragments of reddish-brown cork.
541. VIBURNUM PRUNIFOLIUM

Powder.—Dark brown; stone cells, numerous, large and thick-walled: bast fibers few, with occasional crystal fibers; calcium oxalate in prisms or rosettes (15 to 35 µ in diam.).

270. XANTHOXYLUM

Powder.—Grayish-brown; cork cells nearly colorless and lignified; parenchyma containing small starch grains, oil globules or calcium oxalate; stone cells in small groups; few bast fibers,

78. ZINGIBER

Powder.—Light yellow to brown; parenchyma cell large and thin-walled filled with starch; starch grains ovate to elliptical (15 to 60 µ long); sclerenchyma fibers long and thin-walled; tracheae reticulate or scalariform; yellowish or brown oil and resin cells; brownish flattened cork cells, which are absent in Jamaica Ginger. (See Fig. 298.)