THE work of the dry-farmer is only half done when the soil has been properly prepared, by deep plowing, cultivation, fallowing, for the planting of the crop. The choice of the crop, its proper seeding, and its correct care and harvesting are as important as rational soil treatment in the successful pursuit of dry-farming. It is true that in general the kinds of crops ordinarily cultivated in humid regions are grown also on arid lands, but varieties especially adapted to the prevailing dry-farm conditions must be used if any certainty of harvest is desired. Plants possess a marvelous power of adaptation to environment, and this power becomes stronger as successive generations of plants are grown under the given conditions. Thus, plants which have been grown for long periods of time in countries of abundant rainfall and characteristic humid climate and soil yield well under such conditions, but usually suffer and die or at best yield scantily if planted in hot rainless countries with deep soils. Yet, such plants, if grown year after year under arid conditions, become accustomed to warmth and dryness and in time will yield perhaps nearly as well or it may be better in their new surroundings. The dry-farmer who looks for large harvests must use every care to secure varieties of crops that through generations of breeding have become adapted to the conditions prevailing on his farm. Home-grown seeds, if grown properly, are therefore of the highest value. In fact, in the districts where dry-farming has been practiced longest the best yielding varieties are, with very few exceptions, those that have been grown for many successive years on the same lands. The comparative newness of the attempts to produce profitable crops in the present dry-farming territory and the consequent absence of home-grown seed has rendered it wise to explore other regions of the world, with similar climatic conditions, but long inhabited, for suitable crop varieties. The United States Department of Agriculture has accomplished much good work in this direction. The breeding of new varieties by scientific methods is also important, though really valuable results cannot be expected for many years to come. When results do come from breeding experiments, they will probably be of the greatest value to the dry-farmer. Meanwhile, it must be acknowledged that at the present, our knowledge of dry-farm crops is extremely limited. Every year will probably bring new additions to the list and great improvements of the crops and varieties now recommended. The progressive dry-farmer should therefore keep in close touch with state and government workers concerning the best varieties to use.

Moreover, while the various sections of the dry-farming territory are alike in receiving a small amount of rainfall, they are widely different in other conditions affecting plant growth, such as soils, winds, average temperature, and character and severity of the winters. Until trials have been made in all these varying localities, it is not safe to make unqualified recommendations of any crop or crop variety. At the present we can only say that for dry-farm purposes we must have plants that will produce the maximum quantity of dry matter with the minimum quantity of water; and that their periods of growth must be the shortest possible. However, enough work has been done to establish some general rules for the guidance of the dry-farmer in the selection of crops. Undoubtedly, we have as yet had only a glimpse of the vast crop possibilities of the dry-farming territory in the United States, as well as in other countries.


Wheat is the leading dry-farm crop. Every prospect indicates that it will retain its preëminence. Not only is it the most generally used cereal, but the world is rapidly learning to depend more and more upon the dry-farming areas of the world for wheat production. In the arid and semiarid regions it is now a commonly accepted doctrine that upon the expensive irrigated lands should be grown fruits, vegetables, sugar beets, and other intensive crops, while wheat, corn, and other grains and even much of the forage should be grown as extensive crops upon the non-irrigated or dry-farm lands. It is to be hoped that the time is near at hand when it will be a rarity to see grain grown upon irrigated soil, providing the climatic conditions permit the raising of more extensive crops.

In view of the present and future greatness of the wheat crop on semiarid lands, it is very important to secure the varieties that will best meet the varying dry-farm conditions. Much has been done to this end, but more needs to be done. Our know]edge of the best wheats is still fragmentary. This is even more true of other dry-farm crops. According to Jardine, the dry-farm wheats grown at present in the United States may be classificd as follows:--

I. Hard spring wheats:
(a) Common
(b) Durum

II. Winter wheats:
(a) Hard wheats (Crimean)
(b) Semihard wheats (Intermountain)
(c) Soft wheats (Pactfic)

The common varieties of hard spring wheats are grown principally in districts where winter wheats have not as yet been successful; that is, in the Dakotas, northwestern Nebraska, and other localities with long winters and periods of alternate thawing and severe freezing. The superior value of winter wheat has been so clearly demonstrated that attempts are being made to develop in every locality winter wheats that can endure the prevailing climatic conditions. Spring wheats are also grown in a scattering way and in small quantities over the whole dry-farm territory. The two most valuable varieties of the common hard spring wheat are Blue Stem and Red Fife, both well-established varieties of excellent milling qualities, grown in immense quantities in the Northeastern corner of the dry-farm territory of the United States and commanding the best prices on the markets of the world. It is notable that Red Fife originated in Russia, the country which has given us so many good dry-farm crops.

The durum wheats or macaroni wheats, as they are often called, are also spring wheats which promise to displace all other spring varieties because of their excellent yields under extreme dry-farm conditions. These wheats, though known for more than a generation through occasional shipments from Russia, Algeria, and Chile, were introduced to the farmers of the United States only in 1900, through the explorations and enthusiastic advocacy of Carleton of the United States Department of Agriculture. Since that time they have been grown in nearly all the dryfarm states and especially in the Great Plains area. Wherever tried they have yielded well, in some cases as much as the old established winter varieties. The extreme hardness of these wheats made it difficult to induce the millers operating mills fitted for grinding softer wheats to accept them for flourmaking purposes. This prejudice has, however, gradually vanished, and to-day the durum wheats are in great demand, especially for blending with the softer wheats and for the making of macaroni. Recently the popularity of the durum wheats among the farmers has been enhanced, owing to the discovery that they are strongly rust resistant.

The winter wheats, as has been repeatedly suggested in preceding chapters, are most desirable for dry-farm purposes, wherever they can be grown, and especially in localities where a fair precipitation occurs in the winter and spring. The hard winter wheats are represented mainly by the Crimean group, the chief members of which are Turkey, Kharkow, and Crimean. These wheats also originated in Russia and are said to have been brought to the United States a generation ago by Mennonite colonists. At present these wheats are grown chiefly in the central and southern parts of the Great Plains area and in Canada, though they are rapidly spreading over the intermountain country. These are good milling wheats of high gluten content and yielding abundantly under dry-farm conditions. It is quite clear that these wheats will soon displace the older winter wheats formerly grown on dry-farms. Turkey wheat promises to become the leading dry-farm wheat. The semisoft winter wheats are grown chiefly in the intermountain country. They are represented by a very large number of varieties, all tending toward softness and starchiness. This may in part be due to climatic, soil, and irrigation conditions, but is more likely a result of inherent qualities in the varieties used. They are rapidly being displaced by hard varieties.

The group of soft winter wheats includes numerous varieties grown extensively in the famous wheat districts of California, Oregon, Washington, and northern Idaho. The main varieties are Red Russian and Palouse Blue Stem, in Washington and Idaho, Red Chaff and Foise in Oregon, and Defiance, Little Club, Sonora, and White Australian in California. These are all soft, white, and rather poor in gluten. It is believed that under given climatic, soil, and cultural conditions, all wheat varieties will approach one type, distinctive of the conditions in question, and that the California wheat type is a result of prevailing unchangeable conditions. More researeh is needed, however, before definite principles can be laid down concerning the formation of distinctive wheat types in the various dry-farm sections. Under any condition, a change of seed, keeping improvement always in view, should be baneficial.

Jardine has reminded the dry-farmers of the United States that before the production of wheat on the dry-farms can reach its full possibilities under any acreage, sufficient quantities must be grown of a few varieties to affect the large markets. This is especially important in the intermountain country where no uniformity exists, but the warning should be heeded also by the Pacific coast and Great Plains wheat areas. As soon as the best varieties are found they should displace the miscellaneous collection of wheat varieties now grown. The individual farmer can be a law unto himself no more in wheat growing than in fruit growing, if he desires to reap the largest reward of his efforts. Only by uniformity of kind and quality and large production will any one locality impress itself upon the markets and create a demand. The changes now in progress by the dry-farmers of the United States indicate that this lesson has been taken to heart. The principle is equally important for all countries where dry-farming is practiced.

Other small grains

Oats is undoubtedly a coming dry-farm crop. Several varieties have been found which yield well on lands that receive an average annual rainfall of less than fifteen inches. Others will no doubt be discovered or developed as special attention is given to dry-farm oats. Oats occurs as spring and winter varieties, but only one winter variety has as yet found place in the list of dry-farm crops. The leading; spring varieties of oats are the Sixty-Day, Kherson, Burt, and Swedish Select. The one winter variety, which is grown chiefly in Utah, is the Boswell, a black variety originally brought from England about 1901.

Barley, like the other common grains, occurs in varieties that grow well on dry-farms. In comparison with wheat very little seareh has been made for dry-farm barleys, and, naturally, the list of tested varieties is very small. Like wheat and oats, barley occurs in spring and winter varieties, but as in the case of oats only one winter variety has as yet found its way into the approved list of dry-farm crops. The best dry-farm spring barleys are those belonging to the beardless and hull-less types, though the more common varieties also yield well, especially the six-rowed beardless barley. The winter variety is the Tennessee Winter, which is already well distributed over the Great Plains district.

Rye is one of the surest dry-farm crops. It yields good crops of straw and grain, both of which are valuable stock foods. In fact, the great power of rye to survive and grow luxuriantly under the most trying dry-farm conditions is the chief objection to it. Once started, it is hard to eradicate. Properly cultivated and used either as a stock feed or as green manure, it is very valuable. Rye occurs as both spring and winter varieties. The winter varieties are usually most satisfactory.

Carleton has recommended emmer as a crop peculiarly adapted to semiarid conditions. Emmer is a species of wheat to the berries of which the chaff adheres very closely. It is highly prized as a stock feed. In Russia and Germany it is grown in very large quantities. It is especially adapted to arid and semiarid conditions, but will probably thrive best where the winters are dry and summers wet. It exists as spring and winter varieties. is with the other small grains, the success of emmer will depend largely upon the satisfactory development of winter varieties.


Of all crops yet tried on dry-farms, corn is perhaps the most uniformly successful under extreme dry conditions. If the soil treatment and planting have been right, the failures that have been reported may invariably be traced to the use of seed which had not been acclimated. The American Indians grow corn which is excellent for dry-farm purposes; many of the western farmers have likewise produced strains that use the minimum of moisture, and, moreover, corn brought from humid sections adapts itself to arid conditions in a very few years. Escobar reports a native corn grown in Mexico with low stalks and small ears that well endures desert conditions. In extremely dry years corn does not always produce a profitable crop of seed, but the crop as a whole, for forage purposes, seldom fails to pay expenses and leave a margin for profit. In wetter years there is a corresponding increase of the corn crop. The dryfarming territory does not yet realize the value of corn as a dry-farm crop. The known facts concerning corn make it safe to predict, however, that its dry farm acreage will increase rapidly, and that in time it will crowd the wheat crop for preëminence.


Among dry-farm crops not popularly known are the sorghums, which promise to become excellent yielders under arid conditions. The sorghums are supposed to have come grown the tropical sections of the globe, but they are now scattered over the earth in all climes. The sorghums have been known in the United States for over half a century, but it was only when dry-farming began to develop so tremendously that the drouth-resisting power of the sorghums was recalled. According to Ball, the sorghums fall into the following classes:--


1. Broom corns
2. Sorgas or sweet sorghums
3. Kafirs
4. Durras

The broom corns are grown only for their brush, and are not considered in dry-farming; the sorgas for forage and sirups, and are especially adapted for irrigation or humid conditions, though they are said to endure dry-farm conditions better than corn. The Kafirs are dry-farm crops and are grown for grain and forage. This group includes Red Kafir, White Kafir, Black-hulled White Kafir, and White Milo, all of which are valuable for dry-farming. The Durras are grown almost exclusively for seed and include Jerusalem corn, Brown Durra, and Milo. The work of Ball has made Milo one of the most important dry-farm crops. As improved, the crop is from four to four and a half feet high, with mostly erect heads, carrying a large quantity of seeds. Milo is already a staple crop in parts of Texas, Oklahoma, Kansas, and New Mexico. It has further been shown to be adapted to conditions in the Dakotas, Nebraska, Colorado, Arizona, Utah, and Idaho. It will probably be found, in some varietal form, valuable over the whole dry-farm territory where the altitude is not too high and the average temperature not too low.

It has yielded an average of forty bushels of seed to the acre.

Lucern or alfalfa

Next to human intelligence and industry, alfalfa has probably been the chief factor in the development of the irrigated West. It has made possible a rational system of agriculture, with the live-stock industry and the maintenance of soil fertility as the central considerations. Alfalfa is now being recognized as a desirable crop in humid as well as in irrigated sections, and it is probable that alfalfa will soon become the chief hay crop of the United States. Originally, lucern came from the hot dry countries of Asia, where it supplied feed to the animals of the first historical peoples. Moreover, its long; tap roots, penetrating sometimes forty or fifty feet into the ground, suggest that lucern may make ready use of deeply stored soil-moisture. On these considerations, alone, lucern should prove itself a crop well suited for dry-farming. In fact, it has been demonstrated that where conditions are favorable, lucern may be made to yield profitable crops under a rainfall between twelve and fifteen inches. Alfalfa prefers calcareous loamy soils; sandy and heavy clay soils are not so well adapted for successful alfalfa production. Under dry-farm conditions the utmost care must be used to prevent too thick seeding. The vast majority of alfalfa failures on dry-farms have resulted from an insufficient supply of moisture for the thickly planted crop. The alfalfa field does not attain its maturity until after the second year, and a crop which looks just right the second year will probably be much too thick the third and fourth years. From four to six pounds of seed per acre are usually ample. Another main cause of failure is the common idea that the lucern field needs little or no cultivation, when, in fact, the alfalfa field should receive as careful soil treatment as the wheat field. Heavy, thorough disking in spring or fall, or both, is advisable, for it leaves the topsoil in a condition to prevent evaporation and admit air. In Asiatic and North African countries, lucern is frequently cultivated between rows throughout the hot season. This has been tried by Brand in this country and with very good results. Since the crop should always be sown with a drill, it is comparatively easy to regulate the distance between the rows so that cultivating implements may be used. If thin seeding and thorough soil stirring are practiced, lucern usually grows well, and with such treatment should become one of the great dry-farm crops. The yield of hay is not large, but sufficient to leave a comfortable margin of profit. Many farmers find it more profitable to grow dry-farm lucern for seed. In good years from fifty to one hundred and fifty dollars may be taken from an acre of lucern seed. However, at the present, the principles of lucern seed production are not well established, and the seed crop is uncertain.

Alfalfa is a leguminous crop and gathers nitrogen from the air. It is therefore a good fertilizer. The question of soil fertility will become more important with the passing of the years, and the value of lucern as a land improver will then be more evident than it is to-day.

Other leguminous crops

The group of leguminous or pod-bearing crops is of great importance; first, because it is rich in nitrogenous substances which are valuable animal foods, and, secondly, because it has the power of gathering nitrogen from the air, which can be used for maintaining the fertility of the soil. Dry-farming will not be a wholly safe practice of agriculture until suitable leguminous crops are found and made part of the crop system. It is notable that over the whole of the dry-farm territory of this and other countries wild leguminous plants flourish. That is, nitrogen- gathering plants are at work on the deserts. The farmer upsets this natural order of things by cropping the land with wheat and wheat only, so long as the land will produce profitably. The leguminous plants native to dry-farm areas have not as yet been subjected to extensive economic study, and in truth very little is known concerning leguminous plants adapted to dry-farming.

In California, Colorado, and other dry-farm states the field pea has been grown with great profit. Indeed it has been found much more profitable than wheat production. The field bean, likewise, has been grown successfully under dry-farm conditions, under a great variety of climates. In Mexico and other southern climates, the native population produce large quantities of beans upon their dry lands.

Shaw suggests that sanfoin, long famous for its service to European agriculture, may be found to be a profitable dry-farm crop, and that sand vetch promises to become an excellent dry-farm crop. It is very likely, however, that many of the leguminous crops which have been developed under conditions of abundant rainfall will be valueless on dry-farm lands. Every year will furnish new and more complete information on this subject. Leguminous plants will surely become important members of the association of dry-farm crops.

Trees and shrubs

So far, trees cannot be said to be dry-farm crops, though facts are on record that indicate that by the application of correct dry-farm principles trees may be made to grow and yield profitably on dry-farm lands. Of course, it is a well-known fact that native trees of various kinds are occasionally found growing on the deserts, where the rainfall is very light and the soil has been given no care. Examples of such vegetation are the native cedars found throughout the Great Basin region and the mesquite tree in Arizona and the Southwest. Few farmers in the arid region have as yet undertaken tree culture without the aid of irrigation.

At least one peach orchard is known in Utah which grows under a rainfall of about fifteen inches without irrigation and produces regularly a small crop of most delicious fruit. Parsons describes his Colorado dry-farm orchard in which, under a rainfall of almost fourteen inches, he grows, with great profit, cherries, plums, and apples. A number of prospering young orchards are growing without irrigation in the Great Plains area. Mason discovered a few years ago two olive orchards in Arizona and the Colorado desert which, planted about fourteen years previously, were thriving under an annual rainfall of eight and a half and four and a half inches, respectively. These olive orchards had been set out under canals which later failed. Such attested facts lead to the thought that trees may yet take their place as dry-farm crops. This hope is strengthened when it is recalled that the great nations of antiquity, living in countries of low rainfall, grew profitably and without irrigation many valuable trees, some of which are still cultivated in those countries. The olive industry, for example, is even now being successfully developed by modern methods in Asiatic and African sections, where the average annual rainfall is under ten inches. Since 1881, under French management, the dry-farm olive trees around Tunis have increased from 45,000 to 400,000 individuals. Mason and also Aaronsohn suggest as trees that do well in the arid parts of the old world the so-called "Chinese date" or JuJube tree, the sycamore fig, and the Carob tree, which yields the "St. John's Bread" so dear to childhood.

Of this last tree, Aaronsolm says that twenty trees to the acre, under a rainfall of twelve inches, will produce 8000 pounds of fruit containing 40 per cent of sugar and 7 to 8 per cent of protein. This surpasses the best harvest of alfalfa. Kearnley, who has made a special study of dry-land olive culture in northern Africa, states that in his belief a large variety of fruit trees may be found which will do well under arid and semiarid conditions, and may even yield more profit than the grains.

It is also said that many shade and ornamental and other useful plants can be grown on dry-farms; as, for instance, locust, elm, black walnut, silverpoplar, catalpa, live oak, black oak, yellow pine, red spruce, Douglas fir, and cedar.

The secret of success in tree growing on dry-farms seems to lie, first, in planting a few trees per acre,--the distance apart should be twice the ordinary distance,--and, secondly, in applying vigorously and unceasingly the established principles of soil cultivation. In a soil stored deeply with moisture and properly cultivated, most plants will grow. If the soil has not been carefully fallowed before planting, it may be necessary to water the young trees slightly during the first two seasons.

Small fruits have been tried on many farms with great success. Plums, currants, and gooseberries have all been successful. Grapes grow and yield well in many dry-farm districts, especially along the warm foothills of the Great Basin. Tree growing on dry-farm lands is not yet well established and, therefore, should be undertaken with great care. Varieties accustomed to the climatic environment should be chosen, and the principles outlined in the preceding pages should be carefully used.


In recent years, potatoes have become one of the best dry-farm crops. Almost wherever tried on lands under a rainfall of twelve inches or more potatoes have given comparatively large yields. To-day, the growing of dry-farm potatoes is becoming an important industry. The principles of light seeding and thorough cultivation are indispensable for success. Potatoes are well adapted for use in rotations, where summer fallowing is not thought desirable. Macdonald enumerates the following as the best varieties at present used on dry-farms: Ohio, Mammoth, Pearl, Rural New Yorker, and Burbank.


A further list of dry-farm crops would include representatives of nearly all economic plants, most of them tried in small quantity in various localities. Sugar beets, vegetables, bulbous plants, etc., have all been grown without irrigation under dry-farm conditions. Some of these will no doubt be found to be profitable and will then be brought into the commercial scheme of dry-farming.

Meanwhile, the crop problems of dry-farming demand that much careful work be done in the immediate future by the agencies having such work in charge. The best varieties of crops already in profitable use need to be determined. More new plants from all parts of the world need to be brought to this new dry-farm territory and tried out. Many of the native plants need examination with a view to their economic use. For instance, the sego lily bulbs, upon which the Utah pioneers subsisted for several seasons of famine, may possibly be made a cultivated crop. Finally, it remains to be said that it is doubtful wisdom to attempt to grow the more intensive crops on dry-farms. Irrigation and dry-farming will always go together. They are supplementary systems of agriculture in arid and semiarid regions. On the irrigated lands should be grown the crops that require much labor per acre and that in return yield largely per acre. New crops and varieties should besought for the irrigated farms. On the dry-farms should be grown the crops that can be handled in a large way and at a small cost per acre, and that yield only moderate acre returns. By such cooperation between irrigation and dry-farming will the regions of the world with a scanty rainfall become the healthiest, wealthiest, happiest, and most populous on earth.